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1 INTRODUCTION 

The Elk River watershed is listed as an impaired water body under Section 303(d) of the Clean 
Water Act.  Water quality problems cited under the listing include sedimentation, threat of 
sedimentation, impaired quality of irrigation water, impaired quality of domestic water supply, 
impaired spawning habitat, increased rate and depth of flooding due to sediment, and property 
damage.  Erosion, sediment discharge, and sedimentation has significantly modified the channel 
conditions of Elk River and its tributaries such that a threat to public health, safety, and property 
is present from increased incidences and magnitude of routine flooding, constituting a nuisance 
condition according to the Porter-Cologne Water Quality Control Plan.  A program has been 
developed to recover waterbodies listed under 303(d) of the Clean Water Act via the 
establishment of Total Maximum Daily Loads (TMDL).  The North Coast Regional Water 
Quality Control Board (NCRWQCB) has begun the process of establishing a TMDL for sediment 
in the Elk River watershed, with the goal of restoring and maintaining the sediment impaired 
beneficial uses of water of Elk River and its tributaries.  The North Coast Regional Water Quality 
Control Board retained the team of Stillwater Sciences, Vestra, and Curry Group to evaluate 
landslide hazards in the Elk River basin as one component of TMDL development. 
 
Shallow landslides (both road-related and non-road-related) are acknowledged as the most 
common type of mass movement and dominant management-related sediment source impairing 
beneficial uses in Elk River (PWA 1998, PALCO 2004a, PALCO 2004b).  Consequently, there is 
an immediate need for objective and repeatable methods that can be used in combination with 
existing terrain mapping, landslide inventories, and site-specific geotechnical slope stability 
assessments to reliably predict potential landslide hazards and identify land management 
activities compatible with recovery of sediment impaired beneficial uses.  Such tools are ideally 
suited for use with additional information about sediment delivery and vulnerability of receptors 
to sediment impairment in assessing risk as part of the Elk River sediment TMDL analysis and 
implementation.   
 
Landslide hazard assessment can be broadly grouped into three main approaches:  inferential, 
statistical, and mechanistic or physically-based (Dietrich et al. 2001, National Research Council 
2004, Sidle and Ochiai 2006).  The inferential approach utilizes remote sensing imagery, 
topographic and geologic mapping, geomorphic information (e.g., surface materials and 
landforms), historical information, and field observations to generate maps of landslide features 
and their relative activity.  The approach requires knowledge of local geomorphic processes and 
professional judgment.  Consequently, the reliability of the results are dependent on a map-
maker’s skills and relevant experience.  Although rooted in field observation, the process lacks 
objectivity and emphasizes where landslides have occurred rather than where there is potential for 
landslides to occur in the future.  The statistical approach consists of inventorying all parameters 
related to landslide occurrence and subsequently conducting bivariate or multivariate statistical 
analyses to determine their relative importance.  The process is more objective, but weighting of 
factors based on local experience introduces subjectivity and results are difficult to extrapolate 
beyond specific areas of study (Sidle and Ochiai 2006).  Mechanistic or physically-based 
approaches use quantitative, process-based slope stability and shallow subsurface flow theories to 
predict the spatial distribution of relative slope stability (e.g., Hammond et al. 1992, Wu and Sidle 
1995, Dietrich et al. 1995, Pack and Tarboton 1997, Dietrich and Montgomery 1998, Dhakal and 
Sidle 2003, Haneberg 2004).  These approaches are more objective and have evolved rapidly with 
improved technologies for characterizing fine scale topography over large areas (e.g., LiDAR).  
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These models, however, typically require spatially and temporally distributed model parameters 
(e.g., soil cohesion, root cohesion, soil bulk density, water table level, friction angle, soil depth, 
and hillslope gradient) and are highly simplified due to difficulty in characterizing parameter 
variability over large areas.   
 
Distributed, physically-based modeling approaches that predict the spatial distribution of relative 
slope stability from process-based models of slope stability and shallow subsurface flow using 
high-resolution digital topography take two general forms:  probabilistic and deterministic 
(Haneberg 2000).  Probabilistic approaches allow for uncertainty by assigning probability 
distributions to model parameters, while deterministic approaches establish invariant or spatially 
explicit parameter values and lack an element of uncertainty. 

1.1 Goals and objectives 

Both deterministic and probabilistic physically-based modeling approaches are used in this study 
to predict potential landslide hazards in the Elk River basin.  The specific objectives of the work 
include the following: 

1. Develop a database of observed shallow and deep-seated landslides, 
2. Predict potentially unstable areas using grid-based deterministic and probabilistic hillslope 

stability models, and 
3. Objectively test model predictions of potential instability by relating predicted instability to 

observed landslide occurrence. 

1.2 Project Area 

The Elk River basin (151 km2) is located south and east of the city of Eureka in Humboldt 
County, California (Figure 1-1, Table 1-1).  The Elk River basin originates from the seaward 
slope of the outer Coast Range and flows westward across the coastal plain into Humboldt Bay.  
The basin can be divided into four main areas:  (1) North Fork Elk River (58.2 km2), (2) South 
Fork (50.4 km2), (3) the lower Elk River downstream of the North Fork and South Fork 
confluence (26.9 km2), and (4) Martin Slough (15.3 km2).  The majority of the North Fork Elk 
River basin is privately managed for industrial timber harvest, with private residential properties 
occupying only the lower 2%.  The majority of the South Fork Elk River basin is also privately 
managed for industrial timber operations (65%), but 30% of the basin occurs within the 
Headwaters Forest Reserve (transferred to and managed by Bureau of Land Management since 
the 1999 Headwaters Deal) and the remaining 5% is private residential property in the lower 
South Fork Elk River valley.  Lower Elk River is comprised of mixed private ownership, with 
approximately 24% zoned for timber production.  Martin Slough is in mixed private ownership 
and includes urban development in the southeast portion of the City of Eureka. 
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Table 1-1.  Subwatersheds in the Elk River basin.   

Area by Hillslope Gradient, km2 Length by Channel Gradient, km Area by Geology, km2 Area by Stand Age, km2 

Subwatershed Area, 
km2 <5% 5-15% 15-35% 35-50% 50-65% >65% 0-1% 1-2% 2-4% 4-8% 8-12% >12% 

Qh-
Qmts-

Qrt 
Q-Qds Qtwu Ty Kjfs unknown 0-13 yr 116-500 

yr 14-30 yr 31-50 yr 51-115 yr 

7 Upper North Fork Elk River 11.3 0.2 1.1 3.1 2.3 1.9 2.7 1.4 3.4 6.8 9.3 6.9 28.5 0.0 0.0 5.7 0.9 4.5 0.20 3.23 0.86 4.45 2.35 0.21 
10 North Branch North Fork Elk River 10.4 0.1 0.7 2.8 2.6 2.1 2.2 0.5 1.3 3.3 6.9 7.1 33.5 0.0 0.0 5.9 1.8 2.6 0.03 0.62 0.00 1.86 5.74 2.15 
18 South Branch North Fork Elk River 5.0 0.1 0.5 1.6 1.1 0.8 0.9 0.1 0.8 2.1 3.3 4.8 15.8 0.0 0.0 4.0 0.9 0.0 0.07 0.76 0.06 2.58 1.32 0.17 
8 McWhinney Creek 3.3 0.0 0.2 0.8 0.9 0.8 0.6 0.4 2.0 1.1 1.6 1.5 7.3 0.0 0.0 3.3 0.0 0.0 0.01 0.99 0.00 0.13 1.35 0.80 
4 Bridge Creek 5.7 0.0 0.2 1.0 1.5 1.6 1.4 1.7 1.8 3.1 4.2 3.3 12.6 0.0 0.0 5.7 0.0 0.0 0.01 1.65 0.00 0.01 0.01 4.07 
15 Lake Creek 5.5 0.1 0.5 1.6 1.3 1.0 1.0 0.7 1.9 1.6 3.1 3.4 16.4 0.0 0.0 5.5 0.1 0.0 0.00 1.57 0.00 0.47 2.59 0.88 
6 Browns Gulch 2.3 0.0 0.2 0.7 0.6 0.4 0.3 0.5 1.0 2.3 1.3 1.1 4.0 0.0 0.0 2.3 0.0 0.0 0.02 0.64 0.00 0.00 0.00 1.69 
5 Dunlap Gulch 1.7 0.0 0.2 0.5 0.5 0.3 0.2 0.2 0.9 1.2 1.0 0.8 4.6 0.0 0.0 1.7 0.0 0.0 0.07 0.57 0.00 0.00 0.00 1.08 
9 Lower North Fork Elk River 13.0 0.5 1.8 4.0 2.9 2.0 1.8 16.5 3.2 4.2 7.5 8.0 28.4 0.8 0.4 10.9 1.0 0.0 1.08 2.41 0.00 0.81 4.30 4.41 
20 Corrigan Creek 4.3 0.1 0.4 1.4 1.1 0.7 0.7 0.4 1.5 2.4 4.7 3.4 9.1 0.0 0.0 3.2 1.1 0.0 0.02 0.08 0.05 2.35 1.72 0.11 
17 Upper South Fork Elk River 16.7 0.2 2.0 6.0 3.8 2.4 2.2 1.3 5.2 6.5 13.2 16.9 59.5 0.0 0.0 5.4 11.2 0.0 6.37 3.10 0.33 2.39 3.80 0.68 
19 Little South Fork Elk River 9.3 0.0 0.6 2.6 2.5 1.9 1.7 0.5 1.0 4.0 10.1 8.4 23.0 0.0 0.0 7.3 1.9 0.0 9.27 0.02 0.00 0.00 0.04 0.00 
16 McCloud Creek 6.1 0.1 0.6 2.3 1.5 0.9 0.8 0.8 1.1 1.5 5.5 5.6 22.4 0.0 0.0 6.1 0.0 0.0 5.26 0.00 0.00 0.21 0.51 0.16 
14 Tom Gulch 6.5 0.1 0.9 2.6 1.4 0.8 0.7 1.7 1.4 2.2 5.5 6.6 17.8 0.6 0.0 5.9 0.0 0.0 1.66 0.00 0.00 0.59 4.26 0.00 
11 Lower South Fork Elk River 7.5 0.3 1.0 2.5 1.6 1.1 1.0 9.6 1.5 1.9 5.1 4.0 19.1 0.1 0.4 7.0 0.0 0.0 2.79 0.13 0.00 0.20 3.81 0.57 
12 Railroad Gulch 3.1 0.1 0.4 1.0 0.6 0.5 0.5 1.3 1.2 1.6 2.2 1.4 6.6 1.7 0.2 1.1 0.0 0.0 0.10 0.87 0.00 0.32 1.00 0.81 
13 Clapp Gulch 2.6 0.1 0.3 0.7 0.5 0.4 0.6 0.3 1.2 1.4 2.4 2.4 4.2 1.7 0.2 0.7 0.0 0.0 0.08 0.12 0.00 0.41 1.86 0.16 
1 Martin Slough 15.3 4.8 3.9 2.9 1.6 1.1 0.9 15.9 11.1 13.3 9.3 4.5 6.7 11.2 1.9 2.1 0.0 0.0 15.27 0.00 0.00 0.00 0.00 0.00 
3 Lower Elk River 15.1 4.9 2.7 3.2 1.8 1.3 1.2 21.0 3.7 6.8 11.5 9.2 12.4 6.1 6.0 2.9 0.0 0.0 13.17 0.15 0.00 0.42 1.22 0.12 
2 Lower Elk River West 6.1 1.7 1.9 1.2 0.3 0.1 0.1 6.6 1.3 3.0 5.4 3.0 2.3 4.1 1.9 0.0 0.0 0.0 5.34 0.00 0.00 0.00 0.00 0.00 

Total   151 13 20 42 31 22 22 81.4 46.3 70.6 113.2 102.2 334.4 26.3 11.0 86.7 18.9 7.1 60.80 16.94 1.30 17.21 35.88 18.05 
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1.2.1 Geologic setting 

The Elk River basin is located along the southeastern margin of the actively uplifting and 
deforming southern Cascadia forearc basin at the leading edge of the northward migrating 
Mendocino triple junction.  Northwest-trending faults and folds bound the dominant mountain 
ranges.  The two basement units in the Project Area include the Franciscan Complex Central Belt 
– a Mesozoic to early Cenozoic age accretionary mélange enclosing blocks of more coherent 
sandstone, greenstone, and chert; and the Yager terrane – a Paleogene trench-slope deposit of 
thin-bedded argillite and sandstone turbidites with minor pebbly conglomerate (Ogle, 1953; 
McLaughlin et al., 2000, Marshall and Mendes 2005).  The Wildcat Group, a thick transgressive-
regressive sequence of marine siltstone and fine-grained sandstone of late Miocene to Pliocene 
age, rests unconformably on these basement units.  Undifferentiated shallow water marine and 
fluvial deposits of middle to late Pleistocene age (Hookton Formation and related deposits) cap 
broad, accordant ridges across the western portions of the Elk River basin.  These geologic 
terrains and the dominant hillslope geomorphic processes occurring within them are discussed in 
more detail in Section 2.1.1. 
 

1.2.2 Climate 

The Mediterranean climate of the Elk River basin is characterized by mild, wet winters and a 
prolonged summer dry season.  Mean surface air temperature at the coast ranges from 9°C in 
January to 13°C in June, with summer temperature moderated by fog.  Roughly 90% of the 
annual precipitation occurs as rainfall between October and April.  Mean annual precipitation 
ranges from 99 cm at Eureka to 152 cm near Kneeland, located 20 km inland (elevation 810 m).   
 
Winter rainfall intensity and storm runoff are highly variable due to orographic lifting of 
moisture-laden, frontal air masses as they intersect the outer Coast Range.  Storm events with 
rainfall intensity exceeding 3–4 inches a day are considered capable of initiating landslides 
(PALCO 2004b).  A 24-hour rainfall total of 4–5 inches in the Eureka area (up to approximately 
2000 ft) has an estimated return interval of 5 years (NOAA Atlas Vol XI Northern California 
cited in PALCO 2004b).  Rainfall intensities exceeding 5 inches per day are rare and have only 
occurred 3 times between 1941 and 1998 (water years 1950, 1959, and 1997).  The 24-hour 
rainfall total of 6.8 inches on December 27, 2002 set many records and caused widespread 
landslide damage and flooding.  Annual peak discharges recorded at an Elk River gauge, located 
0.3 km downstream of the North Fork Elk River and South Fork Elk River confluence, range 
from 23.4 m3s-1 to 112.2 m3s-1 for the period 1957–1967, 1997–1998.  Estimated peak discharge 
for the 1.5-year flood at the Elk River gauge is 44.8 m3s-1 (Klein and Anderson, 1999).  
 

1.2.3 Forest management history 

The maritime coastal climate supports a coniferous lowland forest community dominated by 
redwood (Sequoia sempervirens), western hemlock (Tsuga heterophylla), Sitka spruce (Picea 
sitchensis), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii).  While large-scale 
harvest of these species has occurred in the Elk River watershed since the late 1800s, there has 
been a marked increase in harvest using clearcut silviculture in North Fork Elk River (Figures 1-
2, 1-3, and 1-4) and South Fork Elk River (Figures 1-5 and 1-6) since 1994 (White, 2007).  
Harvest data for Lower Elk River and Martin Slough were not available at the time of this report. 
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1.2.4 Sediment sources 

This landslide hazard assessment utilized landslide mapping and other related data collected 
during several prior studies focused on characterizing the rate and causes of sediment production 
and delivery in the Elk River basin.  Pacific Watershed Associates (PWA) conducted a sediment 
source inventory in the North Fork Elk River basin in 1998 that identified sources of erosion and 
sediment delivery to stream channels, distinguished between natural and management-related 
sediment sources, and assessed opportunities for preventing and controlling future sediment 
sources (PWA 1998).  The 1998 study involved extensive aerial photographic analysis and field 
inventory of erosion processes in the North Fork Elk River basin.  PWA has conducted similar 
unpublished inventories for South Fork Elk River.  A draft watershed analysis for the Elk River 
and Salmon Creek areas (PALCO 2004a), completed as a provision of PALCO’s Habitat 
Conservation Plan (PALCO 1999), included further analysis of mass wasting and surface erosion 
processes.  Additional sediment source studies are ongoing in the watershed as part of the HCP 
agreement and cooperative projects with NCRWQCB (PALCO 2004b).   
 
Sediment budgets have been compiled by the Pacific Lumber Company for both North Fork and 
South Fork Elk rivers (Table 1-2).  The majority of sediment delivered to the North Fork Elk 
River system originates from landslides.  The main factors contributing to landslides and other 
management-related sediment supply in the Elk River basin are (PWA 1998, PALCO 1999, 
PALCO 2004a, PALCO 2004b): 

• poorly located, constructed, or maintained roads; 
• logging with ground-based systems on steep slopes; 
• harvesting on inherently unstable slopes; 
• temporary reduction in root strength from clearcutting; and  
• legacy problems associated with old skid trails and abandoned roads. 
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Table 1-2.  Sediment Budgets developed for North Fork and South Fork Elk rivers. 

 North Fork North Fork North Fork and 
South Fork 

North Fork and 
South Fork 

Time Period 1955–1997 1 
(42 year average) 

1995-1997 1 
(3 year average) 

1988–2000 2 
(12 year average) 

1988–2000 3 
(12 year average) 

units yd3mi-2 yr-1 % of 
total yd3mi-2 yr-1 % of 

total yd3mi-2 yr-1 % of 
total yd3mi-2 yr-1 % of 

total 
Non-road 
related 
landslides 

316 51 741 51 183 23 153 23 

Torrent track 
scour 21 3 207 14 – – – – 

Bank erosion 
& streambank 
slides 

37 6 40 3 243 30 222 33 

Scour of filled 
channels 103 17 112 8 – – – – 

Low order 
valley fill 
incision 

– – – – – – – – 

Surface 
erosion from 
disturbed 
areas 

43 7 102 7 6 1 5 1 

Soil creep – – – – 76 9 63 9 
Road-related 
erosion4 96 16 263 18 298 37 225 34 

Total 617 100 1,466 100 806 100 668 100 
1 Data from Table 9 in PWA 1998. 
2 Data from Table B-17 (medium estimates) in PALCO 2004a. 
3 Data estimated from Figure 3.2 in PALCO 2004b. 
4 Road-related erosion is a combination of landslides, surface erosion, gullying and stream crossing failure.  

 
 

1.3 Overview of Approach and Products 

This landslide hazard assessment involved preliminary modeling and model testing in pilot 
basins, review of preliminary results in pilot basins by a technical advisory panel, and subsequent 
application of a refined modeling and model testing approach to the entire Elk River basin.  
Analysts first compiled and verified existing information related to landsliding in the Project Area 
(e.g., geology, soil properties, land cover and vegetation characteristics, hillslope and channel 
gradient, existing sediment source inventories, climate, land use, and harvest history).  A 
technical advisory panel comprised of the model authors, staff from the NCRWQCB, and other 
consulting scientists provided initial guidance during selection and development of modeling and 
model testing approaches in pilot subwatersheds within the Project area.  The modeling and 
model testing approaches were refined based on the collective feedback from the advisory panel 
during a workshop convened on 24 April 2006 to discuss preliminary methods and results in pilot 
areas.  The revised modeling and model testing approaches were applied to the entire Elk River 
basin, and the validity of the results were objectively tested using available landslide mapping in 
the Elk River basin.  
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The products of the landslide hazard assessment include the following: 

• A data base of available terrain and landslide information for the Elk River basin; 
• 4-m digital elevation model (DEM) derived from LiDAR data and used as input for 

hillslope stability modeling; 
• Grid-based results from individual models that predict potential shallow and deep-seated 

instability; and 
• Results of validation tests used to evaluate and compare model performance. 
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2 METHODS 

 

2.1 Geomorphic Terrains 

Evaluation of sediment production and transport potential at the watershed scale can be 
effectively organized by stratifying the watershed into geomorphic terrains.  Four attributes were 
used to define geomorphic terrains in the Elk River Project Area based on their dominant role in 
determining and/or regulating erosion and transport processes: geology, hillslope gradient, 
channel gradient, and vegetation cover type (Table 2-1).  Stand age classes were also defined for 
the Project area where records of forest management history were available.  Other 
characteristics, such as local facies changes and strike and dip of geologic strata, yarding and 
silvicultural methods, and road construction and use are also important factors influencing slope 
instability, but are more difficult to characterize at the watershed scale.   
 
Geologic and stand age attributes were used in this study to (1) assign unique parameter values 
for hillslope stability modeling using PISA; (2) test the validity of model results for potential 
shallow instability; and (3) assess appropriate breaks in potential instability classes.  Combining 
all four geomorphic terrain attributes provides the basis for conducting spatial analyses, 
extrapolating geomorphic processes and rates, and developing load management strategies during 
subsequent steps in the sediment TMDL process.  
 

2.1.1 Geology 

The Franciscan Complex Central Belt (Kjsf) comprises 4.7% of the Project Area, located 
exclusively in the Upper North Fork and North Branch North Fork subwatersheds, where it is in 
contact with the Yager terrane along the Freshwater fault (Figure 2-1).  The Central belt 
Franciscan Complex is a late Jurassic to Cretaceous age accretionary mélange of meta-sandstone 
and meta-argillite enclosing blocks of more competent sandstone, greenstone, and chert.  Large, 
deep-seated landslides and earthflows enclosing competent blocks are common in the Central belt 
Franciscan complex (Marshall and Mendes 2005).  Blocks of competent sandstone commonly 
support steep slopes and weather to soils with low cohesion that are susceptible to debris slides 
and debris flows (Marshall and Mendes 2005). 



FINAL REPORT Landslide Hazards in the Elk River Basin 
Humboldt County, California 

 
1 June 2007 Stillwater Sciences 

9 

 
Table 2-1.  Terrain attributes in the Elk River Basin. 

Geology Hillslope 
Gradient, % 

Channel 
Gradient, % Cover Type Stand Age, yr 

Q-Qds Quaternary alluvium, dune sand deposits 0−5 <1 barren/urban 0−13 

Qh-Qrt-Qmts Hookton Formation and related 
Quaternary terrace deposits 5−15 0−1 agricultural 13−30 

Qtwu Wildcat Group 15−35 1−2 herbaceous 31−50 

Ty Yager terrain 35−50 2−4 shrub >51 

50−65 4−8 conifer, hardwood, and mixed 
conifer-hardwood  

>65 8−12   Kjfs Franciscan Complex Central Belt 

 >12   

Geology modified from McLaughlin et al. 2000 and Marshall and Mendes 2005.  Hillslope and channel gradient derived from 1-m DEM from LiDAR data.  Channel 
network created using 2.5 ha for channel initiation.  Cover type modified from CDF-LCMMP, Stand age from unpublished data provided by PALCO. 
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Yager terrane (Ty) of the Franciscan Complex Coastal Belt comprises 12.5% of the Project Area, 
located predominantly in the Upper South Fork, Upper North Fork, and North Branch North Fork 
watersheds (Figure 2-1).  Yager terrane is a Paleogene trench-slope deposit that typically consists 
of highly folded and often sheared, dark gray argillite, sandstone, and conglomerate.  In the North 
Fork Elk River, argillite (mudstones, siltstones, and shales) comprise 70% of the area; sandstones 
25 %, and conglomerate less than 5% (PWA 1998).  The sandstone facies is commonly a cliff-
forming unit and exerts local base level control where streams have incised through younger, less 
resistant overlap deposits.  The argillite facies is typically deeply weathered and sheared, 
promoting deep-seated flow failures on moderate slopes (Marshall and Mendes 2005).  The Elk 
River Watershed analysis reports 2.5 shallow landslides per square kilometer in the Yager terrain 
over the period 1954−2000 (PALCO 2004a).  
 
The dominant geologic unit in the Elk River Basin is the Wildcat Group (Qtwu) (57.4% of the 
Project Area), a thick transgressive-regressive sequence of late Miocene to middle Quaternary 
marine and nonmarine overlap deposits that thins to the east (Ogle 1953, McCrory 1989, Clarke 
1992).  The Wildcat Group typically consists of poorly to moderately indurated siltstone and fine-
grained silty sandstone that weathers to granular, non-cohesive, non-plastic clayey silts and 
clayey sands (Marshall and Mendes 2005).  Wildcat Group terrain is characterized by steep and 
dissected topography sculpted by debris sliding, and is known for high historical erosion rates by 
shallow landsliding and debris flow.  Shallow landslides in the Wildcat Group are commonly 
associated with headwall swales, inner gorges, and hollows where weathered soil and colluvium 
accumulate over relatively resistant, partially indurated, slowly permeable bedrock with bedding 
planes subparallel to the hillslope (PWA 1998).  The Watershed Sensitivity Factor for bedrock 
geology (PALCO 1999) identifies the Wildcat Group as the most sensitive geology factor, and 
PWA (1998) reports that debris landslides from Wildcat terrain contribute 51% of the total 
sediment delivered to watercourses in the North Fork Elk River watershed.  In the adjacent 
Freshwater Creek Watershed, 83% of all debris landslides are associated with siltstones 
comprising the Wildcat Group.  The Elk River Watershed analysis reports 4.9 shallow landslides 
per square kilometer in Wildcat terrain over the period 1954−2000 (PALCO 2004a).   
 
Undifferentiated shallow water marine and fluvial deposits (gravel, sand, and silt) of the Hookton 
formation (Qh) cap broad, accordant ridge crests in the western part of the Elk River basin.  
These deposits and similar Quaternary marine terrace (Qmts) and Quaternary river terrace (Qrt) 
deposits comprised of poorly consolidated sand and gravel are prone to shallow landsliding on 
steep slopes and terrace risers.  These deposits comprise 17.4% of the Project Area.  The Elk 
River Watershed Analysis reports 9.9 shallow landslides per square kilometer in Hookton terrain 
over a 46-year period (1954−2000) (PALCO 2004a).  Shallow landsliding and deep-seated 
bedding plane failures are common in Hookton terrain (Marshall and Mendes 2005).  
 

2.1.2 Hillslope and channel gradient 

Hillslope gradient is perhaps the most important factor controlling hillslope stability.  For the 
purpose of stratifying the Project Areas into hillslope terrains meaningful to identification and 
management of landslide hazards, slope gradient was classified in 6 categories (0−5%, 5−15%, 
15−35%, 35−50%, 50−65%, and >65%) based on values that have either been mandated in 
regulation or have emerged as practical thresholds (Table 2-1, Figure 2-2) (California Forest 
Practice Rules 2005, NMFS 2000, CGS 1997, Planwest Partners et al. 2005, PALCO 1999, PWA 
1998).  At a site scale, threshold slopes for instability may be strongly influenced by the 
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geotechnical properties of the soil mantle and parent material; local surface and subsurface 
hydrology; and the type, age, and density of vegetation.  Hillslope gradients in the Elk River 
basin were derived from a 1-m DEM generated from LiDAR data.   
 
Six channel gradient classes (<1%, 1–2%, 2–4%, 4–8%, 8–12, and >12%) were defined using 2-
m DEM data from LiDAR and a 2.5 ha threshold for channel initiation (Table 2-1) (Buffleben, 
pers. comm., 19 December 2005).  Gradient classes reflect characteristic channel morphologies, 
capacity for sediment transport, and potential for sediment storage (Montgomery and Buffington 
1997, 1998).  Channel gradient classes to do not integrate directly into analyses of landslide 
hazard, but are classified to inform subsequent TMDL analyses regarding potential for sediment 
delivery and transport.  
 

2.1.3 Cover type and stand age 

Vegetation cover reflects the relative potential for erosion due to differences in canopy cover, 
rainfall interception, and the effects of root distribution and strength on slope stability.  Five 
vegetation cover types were defined in the Elk River Project Area: (1) mixed conifer-hardwood, 
(2) shrub, (3) herbaceous, (4) agricultural, and (5) urban and barren ground (Figure 2-3).  These 
five categories were aggregated from vegetation data compiled as part of the Land Cover 
Mapping and Monitoring (LCMMP) program conducted by the USDA Forest Service Region 5 
Remote Sensing Lab and the California Department of Forestry and Fire Protection's Fire and 
Resource Assessment Program (FRAP).  Approximately 85% of the Elk River basin is mixed-
conifer hardwood; the remainder is distributed evenly among herbaceous, agricultural, and urban 
cover types located predominantly in the lower watershed. 
 
Five stand age classes were defined using PALCO stand age data: <13 yr, 13−30 yr, 31−50 yr, 
and >51 yr (Figure 2-4, Table 1-1).  At the time of this study, stand age data was available only 
for Pacific Lumber Company ownership (PALCO unpublished data).  Stand age is used here to 
assign cohesive root strength parameters for modeling shallow landslide hazards using 
SHALSTAB.V, PISA, and PISA.V.   
 

2.2 Pilot Basins 

Four pilot subwatersheds were selected to conduct preliminary tests on optimal DEM grid size for 
modeling landslide hazards and to experiment with model parameters:  Bridge Creek, Railroad 
Gulch, North Branch North Fork Elk, and Upper South Fork Elk (Figure 2-5, Table 2-2).  Bridge 
Creek is comprised predominantly of relatively homogeneous bedrock of the Wildcat Group 
(Qtwu) that forms steep ridge and valley topography indicative of shallow debris slide and debris 
flow processes.  Railroad Gulch is comprised of poorly consolidated gravel, sand, and silt 
deposits of the Hookton formation.  North Branch North Fork Elk is one of only two basins where 
Franciscan Complex Central Belt (Kjfs) occurs over a large area.  Topography is highly variable 
due to structural control by the Freshwater fault, the presence of highly sheared mélange units 
with a propensity for large deep-seated flow failure, and the occurrence of more resistant siltstone 
and sandstone units that form steep, ridge-and-valley topography.  Upper South Fork Elk is 
comprised of eastward thinning Wildcat Group overlying Yager terrane.  Planar, northeast-facing 
slopes parallel to bedding planes in Yager terrain exhibit deep-seated flow failure, while steeper 
south-facing slopes exhibit predominantly shallow landsliding.   
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Each of the six hillslope stability models (SHALSTAB, SHALSTAB.V, PISA, PISA.V, DSLED-
Rough, and DSLED-Drain) were applied in the pilot watersheds; mass wasting features were 
verified from existing landslide inventories using 2003 aerial photographs (scale 1:12,000) and 
DEM hillshade images; and preliminary tests were developed to validate and compare model 
results.   
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Table 2-2.  Summary of terrain characteristics in pilot subwatersheds.1 

Area (ha) by hillslope gradient class 
Subwatershed 

% 
conifer−hardwood 
in subwatershed 

Stand age, yr 
0−5% 5−15% 15−35% 35−50% 50−65% > 65% 

Total area, 
ha 

unknown 0.10 0.25 0.42 0.13 0.04 0.03 1.0 
0–13 2.5 12 37 43 41 30 165 

14–30 0.04 0.26 0.28 0.11 0.05 0.02 0.77 
31–50 0.07 0.23 0.33 0.23 0.12 0.03 1.0 

Bridge Creek 98% 

>51 2.2 13 60 102 120 110 407 
unknown 0.04 0.40 1.2 0.72 0.41 0.25 3.0 

0–13 0.72 4.4 17 18 14 8.3 62 
14–30 1.4 13 53 44 32 42 186 
31–50 5.3 40 157 143 114 115 574 

North Branch North Fork Elk 
River 100% 

>51 1.6 12 49 53 49 50 215 
unknown 0.53 1.3 3.6 2.0 1.3 1.6 10 

0–13 7.8 16 27 16 11 9.9 87 
14–30 0.39 4.3 12 7.0 4.3 4.0 32 
31–50 1.3 12 32 21 16 18 100 

Railroad Gulch 99% 

>51 0.38 5.6 23 18 15 19 81 
unknown 10 90 247 136 79 75 637 

0–13 4.0 36 108 70 47 45 310 
116–500 0.31 2.3 9.4 8.2 6.2 6.8 33 
14–30 3.8 26 86 59 36 29 239 
31–50 4.7 42 136 91 58 49 380 

Upper South Fork Elk River 92% 

>51 0.74 3.7 16 18 15 14 68 
Total    48 334 1,074 852 657 627 3,592 

1 Reference year for stand age is 2005. 
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2.3 Modeling Landslide Hazards  

The following sections describe methods used in modeling landslide hazards in the Elk River 
basin, including development of DEM topography from LiDAR data and application of models 
for predicting the location of shallow and deep-seated instability. 
 

2.3.1 DEM development 

 
2.3.1.1 LiDAR data 

Topographic data (i.e. digital elevation model) for modeling landslide hazards in the Elk River 
basin was derived from LiDAR (Light Detection and Ranging) data collected during March 
2005 by Space Imaging under contract to the North Coast Regional Water Quality Control 
Board (Sanborn 2005).  LiDAR data capture in the Elk River and Freshwater Creek watersheds 
occurred using an OPTEC ALTM (Airborne Laser Terrain Mapping) LiDAR system 
referencing two airborne GPS base stations.  Table 2-3 shows the planned LIDAR acquisition 
parameters.  

 
Table 2-3.  LIDAR acquisition parameters. 

Average altitude 1,000 meters above ground level 

Airspeed ~100 knots 

Scan frequency 40 hertz 

Scan width half angle 16 degrees 

Pulse rate 50000 hertz 

 
 

A GPS survey network comprised of four points was used to make observations and 
adjustments on the GRS80 ellipsoid, and final airborne GPS data were post-processed using 
Waypoint’s GravNAVTM  software (version 6.03).  The GPS trajectory was combined with the 
raw IMU data and post-processed using Applanix Inc.’s POSPROC Kalman Filtering software.  
The best estimated trajectory and refined attitude data were then re-introduced into the Optech 
REALM software to compute the laser point-positions.  The trajectory was combined with the 
attitude data and laser range measurements to produce 3-dimensional coordinates of the mass 
points. 
 
The LiDAR survey effort was designed to collect masspoints at approximately 4.5 points per m2 
over an approximately 300 km2 area.  First and last returns were produced within REALM 
software, and last return data was filtered using TerraScan software.  Filtered last return data 
representing the bare earth surface (average 2.2 points per m2) was used to interpolate a 
regularly spaced grid of elevation values.  The filtered bare earth (last return) data were 
compiled in 1291 separate text files, each containing x and y coordinates and elevation values 
for filtered points in a 2.5 km2 tile unit of the project area.   
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2.3.1.2 DEM generation 

Several methods for interpolating a regular spaced grid of elevation data from the irregulary 
spaced bare earth point data were tested.  Both inverse distance weighted and spline 
interpolators were discarded after tests indicated a propensity to create circular or rounded 
artifacts near points, especially if the distance and the elevation between points changed 
significantly.  Two preferrred interpolation methods were selected:  a Traingulated Irregular 
Network (TIN) and kriging.  Two 1-m DEM grids were intially generated for a single test tile 
(2.5 km2) by TINing and kriging.  TINing, although much faster, produced faceted trianglular 
planes that overgeneralized the surface in areas with sparse bare earth points, steep slopes, 
and/or thick canopy (Figure 2-6, Figure 2-7).  The TINing process had a significant effect on 
SHALSTAB prediction of potential hillslope instability by reducing the number of cells 
representing highly unstable area (Table 2-4). 

 
Table 2-4.  Comparison of SHALSTAB potential instability in pilot area  

based on TIN vs krig grids. 

Instability 
Cumulative 
% of area 

TIN 

Cumulative 
% of area 

Krig 

Difference 
(Krig - TIN) 

Chronic 
Instability 4.15 6.27 2.12 

<-3.1 5.44 7.54 2.10 
-3.1–-2.8 6.42 8.50 2.08 
-2.8–-2.5 8.45 10.35 1.90 
-2.5–-2.2 12.14 13.82 1.68 
>-2.2 44.80 42.86 -1.94 
Stable 100.00 100.00 0.00 

 
 
Based on these tests, the kriging method was chosen to create a DEM grid from LiDAR bare 
earth ploints.  Kriging assumes that points are spatially autocorrelated (points closest to the 
interpolating cell will have more influence on the cell’s value).  Weights are based on the 
distance between measured points and their spatial arrangement.  The kriging algorithm 
(available in the Spatial Analyst or 3D Analyst extentions of ArcGIS, as well as in Surfer) 
requires the following input parameters: 

Search radius:  the maximum search distance (from the interpolated cell) used to 
include points in the interpolation. 

Number of points: minimum and maximum number of points included in the 
interpolation.  

Lag size: lag is the vector separating any 2 points.  To describe a variogram's structure, 
similar lags are grouped (i.e., pairs of points aligned in roughly the same direction and 
roughly the same distance from each other) into bins.  Lag size is the width (distance) 
of the bins into which these vectors are grouped. 

Variogram model: The variogram defines the degree of spatial dependence of a dataset 
and shows the expected difference in the values being measured (e.g., elevation) as 
they become further apart.  These differences eventually flatten out (become spatially 
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independent), and the distance to where the curve first flattens out is known as the 
range.  The linear model defines a straight line from 0 until the range. 

 
In creating a DEM surface from bare earth points, slope angles and roughness should faithfully 
represent the actual landscape in order to accurately characterize potential instability.  
Specifiying a small number of points and small search radius minimizes computation time and 
generates a rougher surface over small length scales; whereas specifying a large number of 
points and a wide radius substantially increases computation time and leads to a smoother 
surface.  A 1-m grid from kriging was initially created for the Project Area from bare earth 
LiDAR points using a spherical semivariogram, search radius of 20 m, and maximum of 16 
points (Sanborn 2005).  Hillslope stability models were run in four pilot areas using this 1-m 
grid.  Elevation anomolies over small length scales  (e.g., ground artifacts such as stumps, fallen 
logs, and vegetative piles) created topographic “noise” (small scale roughness) in the 1-m grid 
that led to a wide distribution of high potential instability in isolated grid cells.  In addition, 
tiling artifacts were apparent in shaded relief, flow accumulation, hillslope gradient, and 
curvature plots (Figure 2-8).   
 
Several approaches were tested in pilot areas to objectively smooth topographic noise from the 
1-m grid, including a second order local polynomial interpolator and a soil production model 
(refer to Section 2.3.2.1 for description of the model).  The second order local polynomial 
interpolator resulted in significant artifacts.  The soil production and transport model, an 
approach to estimating spatially distributed soil depth as part of the SHALSTAB.V model (refer 
to Section 2.3.2.2), effectively removed most elevation anomolies but excessively smoothed the 
landscape to the point that high potential instability was concentrated exclusively in steep 
swales and low order channels.   
 
After testing various smoothing techniques, kriging was used on LiDAR bare earth points in a 
pilot area to create different size DEM grids (2m, 3m, 4m and 5m).  Comparison of curvature 
and elevation differences with respect to the 1m grid (Figure 2-9) and contour patterns from the 
various grid sizes (Figure 2-10) suggested that the 4-m grid was optimal for modeling hillslope 
stability in the Project Area because it (1) substantially reduced variance in curvature over short 
length scales while minimizing elevation change relative to the 1-m grid, (2) maintained the 
definition of unchanneled valleys apparent in 5-m contours, and (3) reduced computation time 
required for model application and other spatial analyses.  
 
To create the final 4-m DEM used in modeling hillslope stability in the Project Area, grids were 
recreated from the 1291 tiles using the kriging algorithm (linear variogram, radius of 200 m, 
and maximum of 64 points).  To minimize tiling artifacts, tile boundaries were first buffered by 
100 m, and points within buffers on adjacent tiles were combined.  Point shapefiles were 
exported to text files and read into Surfer (the kriging algorithm ran faster in Surfer than in 
ArcGIS).  Output grids from Surfer were then mosaiced in ArcGIS.  To further minimize tiling 
artifacts, each buffered grid was first clipped to the coordinates of the corners of each tile, and 
the clipped grid tiles were mosaiced together into a single 4m grid for the Elk River basin.  
Minor tiling artifacts were still apparent in the 4-m DEM after creating the final 4-m DEM 
mosaic. 
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2.3.2 Shallow landslide models 

Two distributed, physically-based models were initially selected for predicting potential 
shallow landslide hazards based on their common usage and past performance in forested 
mountainous terrain:  the deterministic model SHALSTAB (Montgomery and Dietrich 1994, 
Dietrich et al. 2001) and the probabilistic model PISA (Haneberg 2004, 2005).  Two variations 
of these models were subsequently included in the analyses to allow more parameterization, 
most notably, spatially variation in soil depth.  These include SHALSTAB.V (Dietrich et al. 
1995), and what we refer to here as PISA.V.  All four approaches are objective, mechanistic 
models based on high resolution (4-m) DEM topography developed from LiDAR data.   
 
2.3.2.1 SHALSTAB 

SHALSTAB is a physically-based, deterministic model that combines an infinite slope stability 
model and a steady-state hydrologic model to predict the potential for shallow landsliding 
controlled by topography and pore water pressure (Montgomery and Dietrich 1994, Dietrich et 
al. 2001).  SHALSTAB utilizes a coupled hydrologic-slope stability equation that relates the 
pattern of soil saturation to a hydrologic ratio (q/T) and a topographic ratio (a/b sinθ).  Solving 
for the hydrologic ratio provides the basis for SHALSTAB: 
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where  

sinθ  = head gradient 
tanφ  =   angle of internal friction of the soil mass at the failure plane, 

sρ  =  soil bulk density 

wρ  =  water bulk density 

q  =  effective precipitation 
T  =  vertical integral of saturated conductivity 
a  =  drainage area 
b  = width of the outflow boundary.   

 
Refer to Montgomery and Dietrich (1994), Dietrich and Montgomery (1998), and Dietrich et al 
(2001) for the derivation and theory behind the equation.  The hydrologic ratio q/T captures the 
magnitude of effective precipitation (represented by q) relative to the subsurface downslope 
transmissivity (represented by T).  The larger q is relative to T, the more likely the ground is to 
saturate and the greater the potential instability.  The topographic ratio a/b sinθ captures the 
effects of convergent topography on concentrating runoff and elevating pore water pressure.  
Topographic parameters, such as hillslope angle (θ), drainage area (a), and width of the outflow 
boundary (b) are determined from a 4-m DEM.  
 
Assumptions of the basic SHALSTAB model:   

• The failure plane and shallow subsurface flow are parallel to the hillslope, 
• Subsurface flow is driven by head gradient equal to the topographic slope, 
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• Soils are cohesionless, 
• Root strength is neglected (although root strength strongly effects slope stability, it is 

highly variable over small spatial and termporal scales and difficult to quantify), and 
• Unit weights of saturated and unsaturated soil are equal. 

 
Soil bulk density and the angle of internal friction are treated as spatially constant.  Soil bulk 
density is set at 1,700 kg m-3 (saturated bulk density typically lies between about 1,700 and 
2,000 kg m-3).  The angle of internal friction is set at a relatively high value of 45 degrees, in 
part, to compensate for the absence of root strength. 
 
This basic version of SHALSTAB has been shown to reliably delineate areas prone to shallow 
landsliding in parts of the Coast Ranges of northern California, Oregon, and Washington 
(Montgomery et al. 1998, Shaw and Vaugeois 1999, Dietrich et al. 2001).  The model does not 
predict the location of deep-seated instability nor instability associated with steep, planar slopes 
typical of inner gorges.  The model and documentation for use with ArcView is available from 
the University of California Berkeley at 
http://socrates.berkeley.edu/~geomorph/shalstab/index.htm.   
 
2.3.2.2 SHALSTAB.V 

Soil thickness strongly affects relative slope stability by supporting vegetation that increases 
root strength and by influencing the role of subsurface to overland flow.  Soils are typically 
thinnest on ridges and side slopes and thickest in unchanneled valleys, but the spatial variation 
in soil thickness is rarely incorporated into deterministic hillslope stability models because it is 
highly variable and impractical to measure over large areas.  Dietrich et al. (1995) developed a 
variation of the basic SHALSTAB model that incorporates greater parameterization, especially 
the spatial variability in soil depth: 
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where  

g  = gravity, 
k1  = saturated hydraulic conductivity at the ground surface, 
k2  = saturated hydraulic conductivity at the ground surface when bedrock is 

projected to the ground surface,  
e  = elevation of the bedrock-soil interface, 
h =   soil thickness, 
ho = depth, 
Cr  = cohesive strength contributed by roots, 
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Csw  = cohesive strength of soil when wet.   
n1 and n2 are exponents describing the decrease in hydraulic conductivity normal to the 
ground surface,  

 
Refer to Dietrich et al (1995) for the derivation and theory behind these equations.  The 
hydrologic ratio q/k1 in SHALSTAB.V is conceptually equivalent to the hydrologic ratio q/T in 
SHALSTAB.  Hillslope angle (θ), drainage area (a), and width of the outflow boundary (b) are 
determined from a 4-m DEM.  Nine parameters must be specified to use SHASTAB.V 
(equation 2) once the topography and soil depth are defined: h0, n1, n2, k1, k2, φ, ps, Cs, and Cr.  
These parameters vary systematically in space and time over a watershed, but are difficult to 
define and are treated here as constants for simplicity (Table 2-5). 
 

Table 2-5.  Summary of parameter values used in SHALSTAB.V (equations 2 and 3). 

Parameter Value Reference 
h0 1.5 Dietrich et al. 1995 
n1 0.5 m-1 Dietrich et al. 1995 
n2 1.4 m-1 Dietrich et al. 1995 
k1 2x10-4 m s-1 Dietrich et al. 1995 
k2 4x10-5 m s-1 Dietrich et al. 1995 
φ 32 degrees Prellwitz et al. 2001, Hammond et al. 1992, NAVFEC 1986 
ps 1,656 kg m-3 Prellwitz et al. 2001, Hammond et al. 1992, NAVFEC 1986 
Cs 0 Prellwitz et al. 2001, Hammond et al. 1992, NAVFEC 1986 
Cr 2,000 N m-2 Hammond et al. 1992, Schmidt et al. 2001 

 
 
A continuous soil production and transport model was used to predict soil depths as input to 
SHALSTAB.V (Dietrich, et al. 1995).  Field observations and cosmogenic radionuclide dating 
(Heimsath et al. 2001) confirm that the rate of conversion of intact bedrock to mobile soil 
declines exponentially with soil depth, and can be expressed as: 
 

ahb e
t
z −=
∂
∂ ε           (4) 

 
where 

zb  = height of the soil-bedrock boundary above datum (m) 
t  = time 
ε  = soil production rate (m y-1) at zero soil thickness  
a = rate constant (m-1) 
h  = soil thickness normal to the bedrock boundary (m) 

 
This expression is coupled to a nonlinear soil transport equation describing soil flux (qs) across 
a hillslope (Roering et al. 1999): 
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where 
 K  = nonlinear diffusion coefficient  
 Sc  = critical gradient at which flux becomes infinite for the nonlinear transport law 
 z∇  = topographic gradient derived from DEM 
 
Soil is produced and diffused downslope at each time step based on the non-linear diffusivity 
coefficient (Roering et al. 1999).  An initial soil depth (h) of approximately 33 cm was solved 
for by setting the production rate equal to a lowering rate of 0.01 cm y-1 (Stallman 2003), 
assuming a steady state where soil production is equal to the lowering rate.  The run time is 
intended to approximate the time to steady-state equilibrium when flux rate converges to the 
lowering rate.  A run time of approximately 7,000 years gave a distribution of soils depths 
similar to that observed in the Bridge Creek pilot basin (Prellwitz et al. 2001; J. Berman, Arcata 
Soil Survey Office, pers. comm., 7 April 2006).  Refer to Table 2-6 for a summary of parameter 
constants used in predicting soil depth.   
 
Table 2-6. Summary of parameter constants used in predicting soil depth (equations 4 and 5). 

Parameter Value Reference 
ε Soil production rate 0.000268 m y-1 Heimsath et al. 2001 
a Rate constant 0.0003 m-1 Heimsath et al. 2001 

k Nonlinear diffusion coefficient 0.0032 m2 y-1 Roering 1999; Roering, pers. comm., 6 April 
2006 

Sc Critical gradient 1.25 m m-1 Roering 1999 
 Lowering rate 0.01 cm y-1 Stallman 2003 
 
 
Assumptions of the SHALSTAB.V model: 

• Subsurface flow is driven by head gradient equal to the topographic slope, 
• Saturated conductivity does not vary with depth 
• Soils are cohesionless 
• Root strength treated as constant, 
• Vertical surcharge of vegetation neglected, 
• Unit weights of saturated and unsaturated soil are equal and treated as constants, 
• Bulk density of wet and saturated soil are equal and treated as constants, 
• Angle of internal friction is treated as constant,   
• The lower the ratio of effective precipitation to transmissivity (q/k1), the more unstable. 

 
2.3.2.3 PISA 

PISA is a physically based, probabilistic model that predicts spatially distributed static and 
seismic shallow slope stability for topography obtained from a digital elevation model and 



FINAL REPORT  Landslide Hazards in the Elk River Basin 
Humboldt County, California 

 
1 June 2007 Stillwater Sciences 

21 

geotechnical information (Haneberg 2004, 2005).  Geotechnical information include shear 
strength parameters c and φ, phreatic surface height, and root strength and surcharge.  PISA is 
based on a first-order, second moment (FOSM) formulation of the infinite slope equation used 
by the USFS slope stability program LISA and DLISA (Hammond et al. 1992): 
 

( )[ ]
( )[ ] ββγγγ

φβλγγγ
cossin
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−++
−−++++

=    (6) 

 
where  

Cr  = cohesive strength contributed by roots 
Cs = cohesive strength of soil 
Qt = uniform surcharge due to weight of vegetation 
γm  = unit weight of moist soil above phreatic surface 
γsat = unit weight of moist soil below phreatic surface 
γw  = unit weight of water (9810 N m-3) 
D  = thickness of soil above the slip surface 
Hw  = height of phreatic surface above slip surface normalized relative to soil 

thickness  
β  =  slope angle (degrees) 
φ = angle of internal friction of the soil mass at the failure plane (degrees) 

 
Refer to Haneberg 2004, 2005 for the derivation and theory behind the PISA model.  Model 
documentation is available from Haneberg Geoscience at 
http://www.haneberg.com/Haneberg%20Geoscience/PISA.html.   
 
PISA incorporates parameter uncertainty and variability using first-order, second-moment 
(FOSM) approximations.  The mean value of FS is first calculated using mean values of each of 
the independent variables.  For the uncorrelated independent variables, variance (second 
moment about the mean) is estimated by the first-order truncated Taylor series.  One mean and 
variance for each geotechnical variable is specified for a specific geotechnical map unit (e.g. 
geologic or geomorphic terrain).  PISA takes the parameters for each distribution as input and 
converts them to an equivalent mean and variance if the distribution is not normal.  Four kinds 
of non-normal distributions are allowed: uniform, triangular, β-pert, and extreme value 
(Hanegerg 2004, 2005).   
 
Unique geotechnical parameters were defined for the four dominant geologic terrain units 
forming hillslopes in the Elk River basin ( 
Table 2-7).  Parameter values were estimated based on inventory data from 17 non-road-related 
landslides (Prellwitz et al. 2001) that occurred in the four dominant geologic terrains on 
PALCO property.  These estimates were supplemented and corroborated by published values 
for similar geologic and soil materials and vegetation cover types (Hammond et al. 1992, 
Schmidt et al. 2001, NAVFEC 1986).  β−PERT distributions were chosen as the best-fit models 
for all parameters except Hw because they allow flexibly shaped distributions to be specified in 
terms of three parameters:  minimum, mode, and maximum (sometimes referred to as the 
optimistic, most likely, and pessimistic estimates).  The β-PERT gives more weight to the 
modal, or most likely value and less weight to the tails of the distribution.   
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Table 2-7.  Summary of parameter values used in PISA. 

Values for defining  
β-PERT distributions in PISA1 Parameter Unit 

Minimum Maximum Likely 

Franciscan Complex Central Belt (Kjfs) 

γm unit weight of soil, dry kg m3 1,201 1,602 1,361 

γsat unit weight of soil, saturated kg m3 1,762 2,002 1,842 

φ angle of internal friction degrees 18 32 25 

Cs soil cohesion N m2 4,762 21,905 9,524 

Yager terrane (Ty) 

γm unit weight of soil, dry kg m3 1,361 2,082 1,602 

γsat unit weight of soil, saturated kg m3 1,842 2,322 2,002 

φ angle of internal friction degrees 28 35 31 

Cs soil cohesion N m2 0 13,333 6,667 

Wildcat Group (Qtwu) 

γm unit weight of soil, dry kg m3 1,361 2,002 1,602 

γsat unit weight of soil, saturated kg m3 1,842 2,274 2,002 

φ angle of internal friction degrees 30 34 32 

Cs soil cohesion N m2 4,762 14,286 7,619 

Hookton Formation and related Quaternary terrace deposits (Qh-Qt-Qrt) 

γm unit weight of soil, dry kg m3 1,602 2,082 1,842 

γsat unit weight of soil, saturated kg m3 2,002 2,322 2,162 

φ angle of internal friction degrees 31 35 33 

Cs soil cohesion N m2 0 10,952 2,381 

All terrains 

Cr root cohesion, <13 yr stands N m2 0 4,762 2,381 

Cr root cohesion, >13 yr stands N m2 4,762 25,000 4,762 

Qt surcharge, <13 yr stands N m2 0 476 238 

Qt surcharge, >13 yr stands N m2 238 1905 1190 

γw  unit weight of water N m2 na na 9,810 

d soil mantle depth m 1 13 5 
1 β-PERT distributions are used for all parameters except Hw, which follows an extreme value distribution.  Parameter 

values estimated from Prellwitz et al. 2001 (based on data from 17 non-road-related landslides on PALCO property), 
Hammond et al. 1992, Schmidt et al. 2001, and NAVFEC 1986. 
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An extreme value distribution was used to describe Hw, where the phreatic surface height ranges 
over 0 < h < 1.  The extreme value distribution includes the parameter µ as a measure of 
location (similar to a mean value) and the term σ as a measure of dispersion (similar to a 
standard deviation).  µ was set at 0.5 to represent slopes that have moderate peak annual pore 
pressures (h) in most years, but have the potential to become fully saturated on rare occasions 
and never have peak annual pore pressures below about 0.25.  The term σ was set at 0.1 to scale 
the probability density function so that it tapers off to nearly zero at h= 1, thereby prohibiting 
significant artesian pore water pressure (Haneberg pers. comm., 2 May 2007). 
 
PISA results are expressed in terms of the time-independent probability that the factor of safety 
is less than unity given all possible values of the variable used in the analysis.  It is used to 
make stability comparisons between different areas or map units, delineate critical areas in need 
of further investigation, and determine appropriate management alternatives for achieving 
recovery objectives. 
 
Assumptions of the PISA model: 

• The model predicts the probability of shallow landsliding with translational movement 
and a low ratio of thickness to length.   

• The influence of groundwater is incorporated using slope-parallel phreatic surface, so 
pore water pressure is equal to the pressure exerted by a column of water equal in height 
to that of the phreatic surface above a potential slip surface. 

• Parameter distributions appropriately describe the spatial variability in parameter values.  
 
Probability distributions for input parameters are often poorly understood, difficult to quantify, 
and may not be independent if parameters vary systematically.  It is widely acknowledged that 
soil depth exerts an important control on shallow landsliding, yet varies systematically from 
ridge crests to slopes to hollows.  The primary distinction between SHALSTAB and 
SHALSTAB.V is incorporation of spatially variable soil depth predicted using a soil production 
and transport model.  A second version of PISA (hereafter referred to as PISA.V) was therefore 
developed using the 4-m grid of variable soil depth predicted by the soil production and 
transport model (see Section 2.3.2.2 for description of the model).  The 4-m grid of variable soil 
depths used in PISA.V is identical to that used in SHALSTAB.V.  All other parameters and 
probability distributions used for PISA.V are identical to that described for PISA. 
 

2.3.3 Deep-seated landslide models 

Large storm events can activate debris slides and rotational landslides associated with pre-
existing deep-seated landslide features (De La Fuente et al. 2002).  Despite the potential 
importance of deep-seated landslides to sediment delivery, the physical factors controlling 
deep-seated mass movement are poorly understood and few physical models have been 
developed to assess deep-seated landslide hazards (Miller 1995).  Deep-seated landslide 
morphology is typically characterized by crescent-shaped major and minor scarps; flat-lying 
and backtilted blocks; benched topography; and lobate accumulation zones with hummocky 
topography, seepage lines and springs, ponding, and deflected or irregular drainage patterns.  
Deep-seated landslides and their corresponding level of activity are typically identified based on 
interpretation of these topographic signatures and patterns of drainage development in maps and 
aerial photographs supplemented by field observations.  These approaches, however, require 
substantial effort, are limited by vegetation that obscures relevant features, and require 
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professional judgment based on experience with the local geology and topography; resulting in 
hazard mapping that is subjective. 
 
A suite of tools for objective delineation of terrain prone to deep-seated landslides and 
earthflows using high-resolution digital topographic data is currently being developed (McKean 
and Roering 2004, Roering et al. 2005, Mackey et al. 2005, Mackey et al. 2006, Roering et al. 
2006).  These deep-seated landslide and earthflow detection (DSLED) algorithms identify 
terrain that has already experienced deep-seated slope instability, and thus has a higher potential 
for reactivation (Roering et al. 2006).  The methods provide predictive power in identifying 
slide-prone terrain, and are best utilized as reconnaissance tools in combination with aerial 
photographic interpretation and field mapping.  The models are being developed and tested at 
sites in the northern California Coast Range, Western Cascade Range of Oregon, and elsewhere 
(Roering et al. 2006); and have been used to successfully identify deep-seated mass movement 
associated with the Franciscan melange in the nearby Eel River basin (Mackey et al. 2005, 
Mackey et al. 2006).  Two of the three DSLED algorithms, DSLED Rough and DSLED Drain, 
are used to identify surface roughness and drainage patterns associated with potential deep-
seated mass movement in the Elk River basin.   
 
2.3.3.1 DSLED-Rough 

DLSED-Rough uses the eigenvalue ratio of cell-normal vector dispersion to identify local 
terrain roughness from airborne LiDAR topographic data (McKean and Roering 2004, Roering 
et al. 2006).  The approach is based on observations that landslide surfaces are commonly 
rougher (on a local scale of a few meters) than adjacent unfailed slopes.  DSLED Rough is used 
to construct unit vectors perpendicular to each cell in the DEM, and the statistical method of 
eigenvalue ratios (ln[S1/S2]) is used to describe the clustering of vector orientations (refer to 
McKean and Roering 2004 for the methods and theory behind eigenvalue ratios).  The rougher 
the surface, the more divergent and less clustered the vector orientations.  Mass movement and 
internal deformation of a deep-seated slide mass leads to rougher terrain with low ln (S1/S2) 
values relative to surrounding unfailed terrain.  
 
Eigenvalue ratios (ln [S1/S2]) in the Elk River basin were calculated in a 15x15 m circular 
sampling window that moves over the 1-m DEM.  Ln (S1/S2) values were then spatially 
averaged using a circular moving window with a 50-m radius.  The DSLED-Rough algorithm 
identifies terrace and floodplain areas as “rough” due to small-scale variations in aspect on 
relatively flat surfaces.  To objectively remove these types of false positives and isolate 
signatures of potential deep-seated instability between ridges and valleys, the following portions 
of the watershed were filtered from the spatially averaged DSLED-Rough results:   

1. Polygons mapped at a coarse scale as alluvium (Qal of McLaughlin et al. 2000, Q and 
Qds of Marshall and Mendes 2005) were adjusted to fit terrain slope (7−9%) and 
curvature signatures extracted from alluviated valley bottoms in the Project Area using a 
1-m DEM grid; 

2. In the NW section of Elk River basin only (Martin Slough, Lower Elk River, Lower Elk 
River West), a slope threshold of 9% was used to identify low gradient valley bottoms 
(not mapped as alluvium) and broad-crested ridges, 

3. Watershed divides were buffered 20 m on each side, and 
4. Channels were buffered on each side using the square of the Strahler order (e.g., 1-m 

buffer for Strahler order 1 and 36-m buffer for Strahler order 6). 
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2.3.3.2 DSLED-drain 

DSLED-Drain uses spatially-averaged values of drainage area per unit contour width (a/b) 
calculated using high-resolution topographic data from airborne LiDAR to identify large, 
poorly-drained landforms commonly associated with deep-seated slope instability (Mackey et 
al. 2005, Mackey et al. 2006).  Deep-seated mass movement typically affects hillslope 
hydrology by impeding channel incision and slowing drainage network development, leading to 
large areas with lower a/b values than surrounding unfailed terrain (Mackey et al. 2005, Mackey 
e l. 2006). 
 
DSLED-Drain calculates a/b values using the multiple-directional flow algorithm FD8 (Quinn 
et al. 1995, Costa-Cabral and Burgess 1994, Tarboton 1997).  FD8 divides flow into each 
downstream neighboring cell based on the slope to that neighbor, while increasing the degree of 
flow convergence from the watershed divide to the channel head.  The approach explicitly 
recognizes divergent flow on convex slopes and convergent flow on concave slopes and along 
valley bottoms.  The catchment area, FD a/b, is the total drainage area for each cell divided by 
the cell width.  FD a/b values were spatially averaged using a circular moving window with a 
50-m radius.  False positives associated with ridge crests and valley bottoms were filtered using 
the steps described above for DSLED-Rough.   
 

2.4 Model Testing 

 

2.4.1 Shallow landslide model testing 

Hypothesis tests were developed to objectively validate model results and to evaluate the 
relative performance of the various modeling approaches.  Validation tests and analyses of test 
results had the following primary objectives: 

1. Evaluate the success of each model at correctly classifying potential instability at mapped 
shallow landslides in the Project Area,  

2. Evaluate the aerial extent to which each model may over predict potential shallow 
instability in the Project Area; 

3. Compare the relative performance of various modeling approaches; and 
4. Determine appropriate thresholds for breaks in potential instability classes that balance 

the goals of maximizing correct landslide prediction and minimizing over prediction of 
unstable area. 

 
Different geologic terrains in the Elk River basin (refer Section 2.1 above for descriptions of 
geologic terrains) are dominated by different hillslope geomorphic processes and rates due to 
different parent materials, weathering processes and rates, slope angles, surface and subsurface 
hydrologic interactions, and drainage density.  Validation tests were therefore, independently 
conducted in the four dominant geologic terrains in the Elk River basin:  Hookton and similar 
Quaternary terrace deposits (Qh-Qt-Qrt), Wildcat group (Qtwu), Yager terrain (Ty), and 
Franciscan Complex Central Belt (Kjfs).  Tests in difference geologic terrains were conducted 
with the goal of evaluating the extent to which model performance and model threshold values 
vary in different geologic terrains. 
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2.4.1.1 Hypothesis testing 

An objective and repeatable method of hypothesis testing was developed to address two basic 
questions: 

1. Do shallow landslide models predict greater potential instability at known slide locations 
than at random positions in the landscape?  

2. Are the models better predictors of instability than predictions based solely on hillslope 
gradient? 

 
Two statistical tests were developed to address these questions, one based on randomly selected 
points (irrespective of slope), and the other accounting for the covariate hillslope gradient 
during the point selection process.  For both tests, the null hypothesis states that model 
predictions of potential instability at randomly selected points in the Elk River basin will be 
greater than or equal to model predictions at a landslide point.  For both tests, the alternative 
hypothesis states that model predictions of potential instability will be greater at slide points 
than at random points.  A p-test value, indicating the extent to which models predict greater 
instability at random points than at a landslide point, was estimated as: 
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where Zi is the model value at the ith randomly selected point, Zj is the model value at the jth 
slide, and B is the number of randomly selected points (B=5,000); (Zi ≥ Zj) is 1 if true and 0 if 
false (≥ defined here as greater instability).  P-values vary from 0 to 1; with a value of 0 
indicating a test where predicted instability is always greater at a slide than at random points, 
and a value of 1 indicating a test where predicted instability is always greater at random points 
than at a slide.  A p-value <0.5 indicates that the model predicts greater instability at a landslide 
than at more than half of the 5,000 random points.  The percentage of p-values <0.5 were 
summarized for each model validation test.  Different threshold p-values can be selected to 
change the rigor of the test.   
 
To address the first question, model values for potential instability at mapped landslide points 
were tested against model values of potential instability at a set of random points (sampled with 
replacement) within the Elk River basin.  Random sampling with replacement (i.e., the same 
point can be selected more than once) is used here because comparisons using model values for 
all 4-m grid cells in the Project Area were computationally unfeasible (e.g., the 4-m grid of 
model results includes over 9 million cells in the 151 km2 Project Area).  The large number of 
randomly selected points (B=5,000) ensures that the sample is representative of the population 
of all points in the Project Area.  Random sampling occurred using the “sample” function in the 
“R” statistical package (R Development Core Team 2006). 
 
To address the second question, model values for potential instability at mapped landslide 
points were tested against model values for potential instability at a set of random points 
sampled (with replacement) from a probability distribution of potentially unstable slopes 
defined by hillslope gradient at landslide points.  By incorporating hillslope gradient as a 
covariate, the second test specifically evaluates whether the models are better predictors of 
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instability than predictions based solely on hillslope gradient.  Probability density functions for 
hillslope gradient were constructed for each geologic terrain using the mean and standard 
deviation of gradient values at all non-road-related landslide points mapped in that geologic 
terrain.  Probability densities were calculated for all points in the landscape, assuming a normal 
distribution for hillslope gradient (a reasonable assumption based on graphical analyses of 
hillslope gradient values at landslide points).  The probability densities were calculated using 
the “dnorm” function in the “R” statistical package.  Unique probability distributions for 
gradient were developed for each terrain type (Appendix A).  Probability densities for hillslope 
gradient at landslide points were then used to weight random sampling of points using the 
“sample” function in the “R” statistical package.   
 
The performance of landslide models in validation tests may be significantly influenced by 
uncertainties in the location of landslide initiation points due to inaccuracies in the original 
mapping of landslides on aerial photos (approximately 1:18000 scale) and on coarse-scale 
topographic maps (1:24,000 USGS quadrangles) during field observations.  Due to uncertainty 
in the location of landslide initiation relative to mapped shallow landslide points, statistical tests 
were conducted at two spatial resolutions:  (1) model values for potential instability at a 
landslide point, and (2) model values for the highest potential instability within a specified 
neighborhood of a landslide point.  The first resolution assumes that shallow landslide points in 
the existing landslide database are indeed initiation points, landslide initiation points are 
accurately and precisely mapped within 4 meters (grid cell size), and that model predicted 
values at slide initiation points accurately reflect the limiting instability associated with failure.  
The second resolution allows for uncertainty in the spatial location of landslide initiation 
relative to the mapped landslide point by determining the model value with the highest (most 
limiting) potential instability within an 8-meter radius around a mapped landslide point.  An 8-
m radius considers the model results in all 4-m grid cells adjacent to the mapped landslide 
initiation point.   
 
2.4.1.2 Correct landslide prediction versus area predicted to be unstable 

The fraction of slides and random points within each geologic terrain was used to evaluate 
relationships between (1) the fraction of slides correctly classified and (2) the fraction of the Elk 
River basin predicted to be unstable.  The analysis was intended to guide selection of model 
thresholds that consider both the extent to which a model correctly classifies mapped landslides 
as unstable and the potential over prediction of unstable areas.  Cumulative relative frequency 
distributions were graphed by fitting smoothed logistic regression curves to the data (i.e., model 
predictions of potential instability, fraction of slides correctly classified, and fraction of area 
predicted to be unstable) using the “sm” library (Bowman and Azzalini 1997, 2005) within the 
“R” statistical package.  A kernel smoothing technique was used to generate the curves 
representing the cumulative relative frequency functions using the “sm.binomial” function in 
the “R” statistical package.  For each model type, two cumulative relative frequency functions 
were generated, one for the most unstable value within an 8 m radius of slide points (RS), and 
the other for the most unstable value within an 8 m radius of randomly selected points (RL).  
We defined RL(x) as the fraction of the Project Area within a particular terrain type for which 
the model predicted potential instability is greater than x, and RS(x) as the fraction of the slides 
within a particular terrain type for which model predicted potential instability is greater than x.  
RL(x) is estimated based on the large sample (5,000) of random points, and the random 
selection process ensures that this large sample is representative of the population of all points 
in the Project Area. 
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2.4.1.3 Determination of potential instability thresholds 

In selecting appropriate threshold model values for potential instability classes, there is a 
fundamental tradeoff between (1) the cost of incorrectly classifying landslides and (2) the cost 
of over predicting potentially unstable area.  An instability threshold that incorrectly classifies a 
landslide location as stable may not adequately protect similar areas prone to landsliding.  
Conversely, overprediction of unstable area may result in unnecessary restrictions and 
associated site evaluation costs in stable and economically productive areas.  A particularly 
useful threshold for managing landslide hazards can be defined as the potential instability value 
that simultaneously minimizes the total costs associated with incorrect slide classification and 
over prediction of potential instability.   
 
The total cost of incorrectly predicting slides as stable (more stable than threshold x) can be 
expressed as: A*(1-RS(x)), where A is the total cost associated with incorrectly classifying slides 
as stable in the Project Area.  The total cost associated with over predicting unstable areas can 
be expressed as: B*(RL(x)-c), where B is the total cost due to over prediction in the Project 
Area, and c is the fraction of the landscape that is unstable (estimated by the number of slides 
over the number of cells in the landscape).  The value of x that minimizes the total cost [A*(1-
RS(x))+B*(RL(x)-c)] is the same value that maximizes A*RS(x)-B*RL(x).  If the total cost 
associated with incorrectly classifying slides as stable is equal to the total cost due to over 
prediction (i.e., A=B), then the problem reduces to maximizing RS(x)-RL(x).  In practice, the 
maximum value for RS(x)-RL(x) is found by calculating the difference between the two 
cumulative relative frequency functions for model predicted instability.   
 
To obtain an expected value and confidence interval for the threshold value based on this 
approach, the following steps were taken: 

1. Bootstrap samples of model predicted potential instability within an 8 m radius of slides 
and model predicted instability within an 8 m radius of randomly selected points were 
generated; 

2. Logistic regression curves were fit to data from both bootstrap samples by kernel 
smoothing (refer to methods described above); 

3. A threshold value was calculated based on the method described above; 
4. Steps 1−3 were repeated 5,000 times; 
5. The expected value (i.e., calculated as the mean of all samples) and 95% confidence 

interval for the threshold value (based on the 2.5 percentile and 97.5 percentile), along 
with the expected value and 95% confidence interval for the cumulative relative 
frequencies RS(x) and RL(x) associated with the threshold model value, were calculated. 

 
2.4.1.4 Landslide density graphs 

A second, independent method of evaluating model performance is to compare the landslide 
density (i.e., number of landslides counted in an instability class divided by the total area in that 
instability class) to the random point density in each instability class (Dietrich et al. 2001).  
Model performance can be objectively determined by significantly greater landslide density in 
increasingly unstable classes compared to the nearly constant density of random points across 
instability classes.  If a model performs poorly, there would be little difference between the 
densities of landslides and random points.  If model predicted instability strongly covaries with 
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slope, the random point distribution may reflect the distribution of hillslope gradient in the 
basin.   

Classes of model values were defined for Shalstab and Shalstab V and for PISA and PISA V; 
and three values were calculated for each class: 1) number of random points, 2) number of slide 
points, and 3) watershed area.  For each class, point densities were calculated by dividing either 
the number of random points or the number of slide points by the watershed area.  Densities are 
based on maximum instability within an 8 m radius of points.  The number of random points in 
a given terrain was scaled to match the total number of landslide points by calculating the 
proportion of random points within each defined class and then multiplying these proportions 
by the total number of slide points.  Relative densities in different instability classes are 
therefore, more important than the absolute density values. 

 
2.4.1.5 Existing landslide inventories 

Several independent sets of landslide data exist for the Elk River basin.  These include:  
• a sediment source inventory initially prepared by Pacific Watershed Associates in 1998 

for Pacific Lumber Company and subsequently updated by Pacific Watershed Associates 
in 2001 as part of Watershed Analysis; 

• a forensic landslide investigation prepared by Pacific Lumber Company in 2003; 
• compilation of landslide mapping by Pacific Lumber Company in 2006; and  
• compilation of landslide mapping from review of timber harvest plans by the California 

Geologic Survey in 2005.  
 
Table 2-8 summarizes the important attributes of existing landslide inventories relevant to 
testing the validity of shallow landslide model results in the Elk River basin.   
 
The 2001 inventory of landslides in the ElK River basin conducted by Pacific Watershed 
Associates for Pacific Lumber Company was undertaken as part of a sediment source inventory 
for Watershed Analysis (PALCO 2004a).  The landslide inventory involved mapping landslide 
features and attributes from an historical aerial photographic time series (1954, 1966, 1974, 
1987, 1994, 1997, and 2000).  Over 850 shallow landslide initiation points were mapped from 
air photos and transferred onto base maps at a scale of 1:18,000.  A sample of landslide features 
mapped from aerial photography were field verified during Watershed Analysis and during 
sediment source inventories on Pacific Lumber Company land prior to 1998 (PWA 1998).  The 
landslide forensic investigation conducted by Pacific Lumber Company in 2003 supplemented 
the sediment source inventory by mapping 64 shallow landslides in the Elk River basin that 
were triggered by an intense rainfall event in December 2002 (PALCO unpublished data).  The 
study also identified causal mechanisms for landslide initiation and estimated associated 
sediment delivery.  Accepted field methods were used in the 2003 forensic study to document 
landslide type, morphology, and dimensions; geologic, geomorphologic, and hydrologic 
controls; soil shear strength parameters; volume of sediment production and delivery; 
vegetation characteristics; forest management and timber harvest associations; and road and 
stream crossing associations.  The methods used in the 2003 forensic study were generally 
consistent and compatible with those used in the 2001 landslide inventory by PWA.   
 
Pacific Lumber Company provided Stillwater Sciences with a coverage and associated database 
of attributes that included landslide initiation points identified in the 2001 landslide inventory 
and 2003 forensic study, as well as landslide initiation points and polygons identified during 
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more recent geologic investigations associated with THP development in pilot subwatersheds.  
The data base contained 1,144 shallow landslide initiation points in the Elk River basin.  
Mapping of erosion and depositional areas for individual shallow landslides was not available 
for the Project Area at the time of this study.  These data are the most comprehensive and 
extensively ground-verified landslide data available for the Project Area.  All shallow landslide 
initiation points from this compilation that were characterized as debris slides, translational 
slides, or translational debris slides and occurred on open slopes with no apparent road 
association were used in model validation tests (Figure 2-11).   
 
The California Geological Survey mapped landslides and their attributes from aerial 
photographs (1940 to 2000), compiled existing landslide mapping, and interpreted relative 
landslide potential in the Elk River basin during preparation of the Watershed Mapping Series 
for the Elk River Watershed (Marshall and Mendes 2005).  Nearly 550 shallow landslide 
features were mapped from aerial photographs and classified following DMG (1997) and 
Cruden and Varnes (1996).  Landslide data compiled by Marshall and Mendes (2005) were not 
used in model validation tests for the following reasons:  (1) landslides were mapped and 
compiled at a coarse scale (1:24,000), (2) no landslide mapping was available for the period 
after 2000, (3) field verification of the mapping was limited, (4) the work included no 
assessment of positional accuracy, and (5) the data do not include an attribute for road 
association.  CGS interpreted relative landslide potential in the Elk River basin based on a 
matrix of values assigned to various classes of (1) landslide feature type and activity level, (2) 
hillslope and channel gradient derived from 10-m DEM data, (3) potential instability predicted 
by SHALSTAB, and (4) geologic terrain type.  Individual coverages were converted to grids, 
assigned values according to the matrix, and merged into final grid.  
 
The performance of landslide models in validation tests may be significantly influenced by 
uncertainties in the location of landslide initiation points related to inaccuracies in the original 
mapping of landslides on aerial photos (approximately 1:18000 scale) and on coarse-scale 
topographic maps (1:24,000 USGS quadrangles) during field observations.  Stillwater Sciences 
verified mass wasting features in pilot areas using 2003 aerial photographs (scale 1:12,000) and 
hillshade images from a 1-m DEM derived from LiDAR.  A standardized data sheet was used to 
characterize specific attributes of mass wasting features, based on landform identification and 
mapping standards outlined in Bedrossian (1983), Selby (1993), and Cruden and Varnes (1996). 
These attributes were consistent with landslide mapping by PWA (2001, unpublished data), 
PALCO (unpublished data), and Marshall and Mendes (2005).  Where feasible, the slide scar 
was distinguished from the runout track.  Some older mass wasting features were not visible in 
the 2003 aerial photos.  Despite verification of the positional accuracy of mapped landslides in 
pilot areas, uncertainty associated with existing shallow landslide initiation points throughout 
the Elk River basin could not be directly assessed as part of this effort. 
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Table 2-8.  Existing landslide data in the Elk River basin. 

  2001 landslide inventory  2003 landslide investigation 2005 landslide mapping 
Source PWA SCOPAC CGS 

Objective sediment source inventory investigation of slides triggered by 2002 
storm event  regional landform and landslide mapping 

Methods aerial photo inventory, field survey field survey 
aerial photo inventory, review of geologic 

field surveys from THP reports, limited field 
observation 

Base data historical aerial photography 1954-2000 2003 color air photos historical aerial photography 1940-2000 

Scale 1:12,000 to 1:21,120 1:12,000 1:12,000 to 1:36,000; compiled on 
orthophotoquads at 1:24,000 

Data 

feature type, certainty, photo year, erosion 
dimensions (L, W, D, V), depositional 
dimensions, delivery, management 
association (road, harvest, landuse), 
geomorphic association (landform, hillslope 
gradient, horizontal curvature), veg cover 

feature type, activity, dimensions (L, W, D), 
runout length, delivery, management 
association (road type, stand type) 

initiation type and confidence, activity, 
source year and approximate age, area, 
delivery, thickness, harvest history, THP 
number 

Format initiation points initiation points 
initiation points (shallow landslides), 

polygons (deep-seated landslides), and lines 
(debris flows) 
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2.4.2 Deep-seated landslide modeling 

DSLED-Rough and DSLED-Drain modeling approaches are in development and have not been 
extensively or systematically tested using independent deep-seated landslide data sources.  
Testing of model results for potential deep-seated hillslope instability were limited by available 
deep-seated landslide mapping in the Project Area.  After comparison of modeling results with 
mapped deep-seated features mapped by CGS (Marshall and Mendes 2005) and discussion of 
alternative approaches, it was determined that there is currently insufficient information to 
objectively test the modeling results using existing landslide mapping.  This is largely due to 
uncertainties in the types, boundaries, and activity level of existing deep-seated landslide 
mapping.  Evaluation of deep-seated model performance in later sections of this report are 
therefore qualitative.   
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3 RESULTS 

 

3.1 Shallow Landslide Modeling Results 

Four distributed, physically-based models were employed to predict potential shallow landslide 
hazards in the Elk River basin:  the deterministic models SHALSTAB and SHALSTAB.V, and 
the probabilistic models PISA and PISA.V.  Results are based on topographic data obtained from 
a 4-m DEM constructed from LiDAR data and the parameter values discussed above. 
 
The spatial distribution and magnitude of log (q/T) results for SHALSTAB and SHALSTAB.V 
are shown in Figure 3-1 Figure 3-2, respectively.  High, moderately high, and moderate potential 
instability are represented by areas where log q/T is less than or equal to -3.1, -2.8, and -2.5, 
respectively.  These preliminary classes are based on suggested log(q/T) thresholds reported for 
SHALSTAB applications in other areas (Dietrich et al 2001, Montgomery et al. 1998).  The 
pattern of potential instability predicted by SHASTAB and SHALSTAB.V is similar, where areas 
with relatively high potential for shallow instability generally occur on steep convergent slopes.  
SHALSTAB V focuses instability in steep, convergent areas with thicker soil mantle and predicts 
greater stability in divergent areas and less steep convergent areas with thinner soil mantle.   
 
The spatial distribution and magnitude of probability of failure predicted by PISA and PISA.V 
are shown in Figure 3-3 and Figure 3-4, respectively.  Probability of failure classes shown for 
PISA and PISA.V were classified in order to best illustrate the range of potential instability.  
PISA.V results in notably lower probabilities of failure. 
 
The magnitude and distribution of the modeling results are further discussed and compared in the 
following sections on model testing. 
 

3.2 Shallow Landslide Model Testing 

 

3.2.1 Model performance based on p-tests  

Statistical p-tests were used within a hypothesis testing framework to address two basic 
questions: 

1. Do shallow landslide models predict greater potential instability at known slide locations 
than at random positions in the landscape?  

2. Are the models better predictors of instability than predictions based solely on hillslope 
gradient? 

 
To address the first question, model values for potential instability at mapped landslide points 
were tested against model values of potential instability at a set of random points sampled within 
the Elk River Project Area.  To address the second question, model values for potential instability 
at mapped landslide points were tested against model values for potential instability at a set of 
random points sampled from a probability distribution of potentially unstable slopes defined by 
hillslope gradient at landslide points (Appendix A).  A p-test value of less than 0.5 (p<0.5) means 
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that the model value at a landslide point predicted higher potential instability than model values at 
more than half of the 5,000 random points.  P-test results for individual landslides are shown in 
Appendix B for tests conducted based on randomly sampled points, and in Appendix c for tests   
conducted based on points randomly sampled from a distribution of potentially unstable slopes.  
Reliable model validation based on p-testing was not possible in Franciscan Complex Central 
Belt due to the small sample size (n=6) for non-road-related shallow landslide initiation points in 
that terrain.   
 
Table 3-1 summarizes the percent of shallow landslides in each geologic terrain where p<0.5.  
The percent of shallow landslides where p <0.5 was significantly higher when p-tests were based 
on the highest potential instability (most limiting) within an 8-meter radius of a point rather than 
instability at a point, and we assume hereafter that maximum instability within a radius is more 
representation of model performance.  A second percentage (reported in parentheses in Table 3-1) 
was calculated after removing landslides where p>0.5 for all four models, indicating poor 
performance for all models.  In removing these landslide points, we assume they are not located 
accurately enough to encompass the landslide initiation area (limiting instability) within an 8-m 
radius and are therefore less useful in evaluating model performance. 
 
For three of the four models (SHALSTAB, SHALSTAB.V, and PISA), p-values based on 
random sampling were less than 0.5 for 73% or more of the landslide points.  In other words, for 
73% or more of the landslides in a given terrain, all three models predicted greater potential 
instability at the slide point than at more than half of the random points.  This percentage 
increased to 82% or more when considering only landslides where p<0.5 for at least one model.  
When P-tests were conducted by randomly sampling points from a distribution of potentially 
unstable slopes (defined by hillslope gradient at landslide points), p values were still <0.5 for 
64% or more landslide points, and 75% or more landslide points where p<0.5 for at least one 
model.  These p-test results statistically demonstrate that (1) shallow landslide models do predict 
greater potential instability at known slide locations than at random locations, and (2) the models  
are significantly better predictors of potential instability than predictions based solely on hillslope 
gradient.  The performance of shallow landslide models relative to each other was determined for 
each geologic terrain based on comparison of p-test values, where the relative performance is 
defined as the percent of shallow landslides with p<0.5.(Tables 3-2 , 3-3, and 3-4).  The following 
results are apparent when comparing p-test results based on the highest (most limiting) instability 
within an 8-meter radius of a point and using only landslide points where p<0.5 for at least one 
model:   

• Qh-Qmts-Qrt terrain:  SHALSTAB.V and PISA.V both performed better than other 
models.  Differences between SHALSTAB.V and PISA.V, however, were small (within 
3%).  Differences between PISA and PISA.V were also small (within 3%).   

• Qtwu terrain:  SHALSTAB.V and PISA both performed better than other models.  
Differences between SHALSTAB.V and PISA, however, were small (within 3%). 

• Ty terrain:  SHALSTAB.V performed significantly better than PISA.  Differences in all 
other model comparisons were small (within 3%). 

 
In summary, comparisons of model performance based on p-values indicate that SHALSTAB.V 
is the best-performing deterministic model and PISA is typically the best-performing probabilistic 
model.  Differences between SHALSTAB.V and PISA are typically small (within 3%).   
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Table 3-1.  Percent of shallow landslides where P-test results were less than 0.5. 

Percent based on potential instability at point Percent based on max instability within 8-m radius1 Test 
SHALSTAB SHALSTAB.V PISA  PISA.V SHALSTAB SHALSTAB.V PISA  PISA.V 

Qh Terrain (n=78 landslides, n=68 landslides where p<0.5 for at least one model) 

Random points 58 55 67 50 76 (87) 78 (90) 76 (87) 71 (81) 
Random points 
sampled from slope 
distribution at 
landslides 

58 55 62 50 68 (79) 71 (82) 71 (82) 71 (82) 

Qtwu Terrain (n=397 landslides, n=355 landslides where p<0.5 for at least one model) 

Random points 66 57 70 22 73 (82) 73 (82) 75 (84) 64 (72) 
Random points 
sampled from slope 
distribution at 
landslides 

60 57 60 22 66 (75) 66 (76) 71 (81) 64 (73) 

Ty Terrain (n=88 landslides, n=77 landslides where p<0.5 for at least one model) 

Random points 68 59 73 40 78 (87) 73 (83) 75 (86) 67 (77) 
Random points 
sampled from slope 
distribution at 
landslides 

66 59 64 40 69 (84) 64 (77) 70 (85) 65 (78) 

1 Number in parentheses is the percentage of shallow landslides where P-test results were <0.5 when including only those landslides points where 
p<0.5 for at least one model. 
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Table 3-2.  Comparative model performance in Qh-Qmts-Qrt terrain based on p-values 
relating potential instability at landslide points to potential instability at random points.  
Values are percent of shallow landslides for which model in column is a better (lower p-
value), equal (equal p-value), or worse (higher p-value) predictor of potential instability 
than model in row. 

 
Based on potential instability at points (78 landslides) 

SHALSTAB V PISA PISA V 
  better equal worse better equal worse better equal worse 

SHALSTAB 32% 35% 33% 69% 3% 28% 27% 37% 36% 
SHALSTAB V       58% 3% 40% 22% 41% 37% 

PISA             33% 3% 64% 
Based on maximum instability within 8-m radius of points 

SHALSTAB V PISA PISA V 
 better equal worse better equal worse better equal worse 

SHALSTAB 53% 14% 33% 59% 0% 41% 58% 5% 37% 
SHALSTAB V       54% 1% 45% 53% 8% 40% 

PISA             53% 0% 47% 
Based on maximum instability within 8-m radius and  

only slide points where P<0.5 for at least one model (68 landslides) 
SHALSTAB V PISA PISA V 

  better equal worse better equal worse better equal worse 
SHALSTAB 60% 3% 37% 53% 0% 47% 59% 0% 41% 

SHALSTAB V       47% 1% 51% 53% 1% 46% 
PISA             53% 0% 47% 
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Table 3-3.  Comparative model performance in Qtwu terrain based on p-values relating 
potential instability at landslide points to potential instability at random points.  Values are 
percent of shallow landslides for which model in column is a better (lower p-value), equal 
(equal p-value), or worse (higher p-value) predictor of potential instability than model in row. 

 
Based on potential instability at points (397 landslides) 

SHALSTAB V PISA PISA V 
  better equal worse better equal worse better equal worse
SHALSTAB 30% 27% 43% 66% 3% 30% 16% 31% 52% 
SHALSTAB V       65% 3% 32% 16% 41% 44% 
PISA             17% 3% 81% 

Based on maximum instability within 8-m radius of points 
SHALSTAB V PISA PISA V 

 better equal worse better equal worse better equal worse
SHALSTAB 55% 11% 34% 57% 0% 43% 40% 8% 52% 
SHALSTAB V       57% 0% 43% 38% 12% 51% 
PISA             40% 0% 60% 

Based on maximum instability within 8-m radius and  
only slide points where P<0.5 for at least one model (359 landslides) 

SHALSTAB V PISA PISA V 
   better equal worse better equal worse better equal worse
SHALSTAB 60% 4% 36% 56% 0% 44% 45% 1% 54% 
SHALSTAB V       53% 0% 46% 42% 3% 55% 
PISA             45% 0% 55% 
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Table 3-4.  Comparative model performance in Ty terrain based on p-values relating potential 
instability at landslide points to potential instability at random points.  Values are percent of 
shallow landslides for which model in column is a better (lower p-value), equal (equal p-value), 
or worse (higher p-value) predictor of potential instability than model in row. 

 
Based on potential instability at points (88 landslides) 

SHALSTAB V PISA PISA V 
  better equal worse better equal worse better equal worse
SHALSTAB 34% 31% 35% 75% 2% 23% 28% 28% 43% 
SHALSTAB V       70% 2% 27% 20% 39% 41% 
PISA             22% 3% 75% 

Based on maximum instability within 8-m radius of points 
SHALSTAB V PISA PISA V 

 better equal worse better equal worse better equal worse
SHALSTAB 42% 14% 44% 51% 0% 49% 41% 9% 50% 
SHALSTAB V       48% 0% 52% 43% 15% 42% 
PISA             43% 0% 57% 

Based on maximum instability within 8-m radius and  
only slide points where P<0.5 for at least one model (77 landslides) 
SHALSTAB V PISA PISA V 

  better equal worse better equal worse better equal worse
SHALSTAB 48% 5% 47% 48% 0% 52% 47% 0% 53% 
SHALSTAB V       40% 0% 60% 49% 3% 48% 
PISA             49% 0% 51% 

 
 

3.2.2 Model performance based on landslide density 

As an alternative approach to evaluating model performance, landslide density graphs were 
generated using methods similar to Dietrich et al. (2001).  Model performance can be objectively 
determined by an increase in landslide density in increasingly unstable classes compared to the 
nearly constant density of random points across instability classes.  Plots showing the density of 
landslide points versus the density of random points in the three dominant geologic terrains are 
shown in Figure 3-5 for SHALSTAB and Figure 3-6 for SHALSTAB.V.  The  SHALSTAB and 
SHALSTAB.V results demonstrate significant and increasing divergence between landslide 
density and random point density at log [q/T] values less than -2.2 in Qh-Qmts-Qrt and less than -
2.5 to -2.8 in Qtwu terrain.  SHALSTAB results in Ty terrain indicate a significant divergence 
between landslide density and random point density at log [q/T] values less than about -2.8.   
 
Plots showing the density of landslide points versus the density of random points in the three 
dominant geologic terrains are shown in Figure 3-7 for PISA and Figure 3-8 for PISA.V.  The 
PISA and PISA.V results also demonstrate increases in landslide density at the higher instability 
classes relative to random point density.  In the case of PISA, landslide and random point 
densities diverge at failure probabilities of about 0.15 in Qh-Qmts-Qrt terrain, gradually above 
about 0.1 then abruptly at 0.3 in Qtwu terrain, and above about 0.15 in Ty terrain.  In the case of 
PISA.V, divergence occurs at failure probabilities of 0.25 in Qh-Qmts-Qrt terrain and abruptly 
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from the origin in Qtwu terrain.  Landslide densities area not reported for Ty terrain due to the 
small number of landslides mapped in different probability classes within that terrain   
 

3.2.3 Correct landslide prediction versus area predicted to be unstable 

The fraction of watershed area encompassed by a model-predicted potential instability value (log 
(q/T) or probability of failure) relative to the number of mapped landslides correctly predicted by 
that instability value is a useful measure for determining relevant landslide hazard classes 
(Dietrich et al. 2001).  The approach considers both (1) the extent to which a model threshold 
correctly classifies mapped landslides as unstable and (2) the potential over prediction of unstable 
area.  Figure 3-9 and Figure 3-10 show the cumulative percent area and cumulative percent of 
mapped landslides in the Elk River watershed for potential instability predicted by SHALSTAB, 
SHALSTAB V, PISA, and PISA V (Table 3-5).  Figure 3-11 shows cumulative percent of 
watershed area plotted as a function of the cumulative percent of landslides correctly predicted by 
a given potential instability value.  SHALSTAB and SHALSTAB V values are plotted for classes 
used in validation tests in the Coast Ranges of California and Oregon (Dietrich et al. 2001).  PISA 
and PISA V classes are plotted at intervals within the range of probability of sliding values 
encompassing the majority of landslides in the Elk River basin (0–0.5).   
 
SHALSTAB V results in the Elk River basin, when compared to previous SHALSTAB validation 
studies in similar terrain, correctly predict fewer landslides and classify less of the watershed area 
as unstable for a given log (q/T) threshold.  Dietrich et al. (2001) found that for 7 watersheds in 
the northern California Coast Range, the cumulative percentage of mapped in-unit landslides for 
the less than -3.1, -2.8, and –2.5 categories was 46, 58, and 73 percent, respectively.  The 
cumulative area covered by the less than -3.1, -2.8, and –2.5 categories was 11.4, 16, and 25.7 
percent, respectively.  A study of 629 landslides in Washington Coast Range found that 86% of 
the slides occurred within log (q/T) less than -2.5 using 30-m data (K. Sullivan, pers. com., 1994 
as cited in Dietrich et al. 2001).  Montgomery et al. (1998), found that when SHALSTAB was 
tested against 3,224 landslides in 14 watersheds of the Oregon and Washington Coast Ranges, 
about 66% of the landslides occurred within log (q/T) less than -2.5 using 30-m grid data.  In 
comparison, the cumulative percentage of landslides in the less than -3.1, -2.8, and –2.5 
categories in the Elk River basin was 10, 19, and 29 percent, respectively; and the area covered 
by the less than -3.1, -2.8, and –2.5 categories was 3, 6, and 13 percent, respectively (Table 3-5).  
Discrepancies between validation results reported for the Elk River basin and those reported for 
other areas are likely due to (1) uncertainties in the actual location of shallow landslide initiation 
relative to the mapped landslide points used to test model results; (2) differences in the resolution 
of topography used in mapping, modeling, and model testing; and (3) differences between the 
processes controlling model-predicted potential instability (shallow failure in areas with steep, 
convergent topography and thick soil accumulation) and the processes controlling shallow 
landsliding in the Elk River basin. 
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Table 3-5.  Summary of validation results:  cumulative percent of area 
and cumulative percent of landslides by instability class. 

SHALSTAB           
  -3.1 to -9.9 -2.8 to -3.1 -2.5 to -2.8 -2.2 to -2.5   
Geologic Terrain area slides area slides area slides area slides   
Kjfs 5% 17% 8% 33% 15% 50% 26% 67%   
Ty 4% 13% 8% 19% 13% 31% 22% 48%   
Qtwu 2% 5% 4% 9% 8% 19% 16% 31%   
Qh-Qmts-Qrt 2% 9% 4% 11% 8% 16% 15% 34%   
Total 3% 7% 5% 11% 9% 20% 17% 34%    
           
SHALSTAB V           
  -3.1 to -9.9 -2.8 to -3.1 -2.5 to -2.8 -2.2 to -2.5   
Geologic Terrain area slides area slides area slides area slides   
Kjfs 6% 33% 10% 50% 19% 67% 29% 83%   
Ty 5% 19% 9% 30% 16% 35% 24% 46%   
Qtwu 3% 8% 6% 18% 12% 26% 21% 42%   
Qh-Qmts-Qrt 3% 8% 6% 14% 11% 32% 20% 39%   
Total 3% 10% 6% 19% 13% 29% 22% 43%   
           
PISA           
  0.2 to 0.3 0.1 to 0.2 0.05 to 0.1 0.01 to 0.05 0.001 to 0.01 
Geologic Terrain area slides area slides area slides area slides area slides 
Kjfs 1% 17% 4% 17% 11% 33% 29% 83% 50% 83% 
Ty 2% 5% 7% 24% 13% 41% 27% 57% 45% 72% 
Qtwu 1% 2% 2% 7% 6% 17% 18% 37% 36% 59% 
Qh-Qmts-Qrt 6% 14% 12% 22% 17% 32% 29% 50% 43% 68% 
Total 1% 5% 4% 12% 8% 22% 20% 42% 39% 63% 
           
PISA V           
  0.2 to 0.3 0.1 to 0.2 0.05 to 0.1 0.01 to 0.05 0.001 to 0.01 
Geologic Terrain area slides area slides area slides area slides area slides 
Kjfs 0% 0% 0% 0% 0% 0% 1% 0% 2% 17% 
Ty 0% 1% 0% 4% 1% 5% 1% 6% 3% 10% 
Qtwu 0% 0% 0% 1% 0% 1% 0% 2% 1% 4% 
Qh-Qmts-Qrt 1% 1% 1% 1% 2% 5% 4% 14% 9% 16% 
Total 0% 1% 0% 1% 0% 2% 1% 5% 2% 7% 

 



FINAL REPORT Landslide Hazards in the Elk River Basin 
Humboldt County, California 

 
1 June 2007 Stillwater Sciences 

41 

 
The sampling approach outlined in Section 2.4.1.3 was independently used to determine a 
threshold for managing landslide hazard that minimizes the total cost associated with incorrect 
slide classification and over prediction of potentially unstable area.  Table 3-6 summarizes 
confidence intervals for threshold values and the associated cumulative fraction of slides or 
random points classified by the threshold value (refer also to Appendix E).  The 95% confidence 
intervals are based on the 2.5 percentile and 97.5 percentile from 5000 bootstrap iterations.   
 
Log(q/T) thresholds for SHALSTAB and SHALSTAB.V based on the sampling approach are 
similar for a given geologic terrain, ranging from -2.1 in Qh-Qmts-Qrt terrain to -2.5 in Ty terrain 
(Table 3-5).  RS(x) and RL(x) for the inferred SHALSTAB and SHALSTAB.V thresholds were 
also similar for a given geologic terrain (Table 3-6).  Threshold values determined by the RS(x)-
RL(x) method, however, were lower, and therefore more conservative than suggested log(q/T) 
thresholds reported for SHALSTAB applications in other areas (Dietrich et al 2001, Shaw and 
Vaugeois 1999, Montgomery et al. 1998).  Dietrich et al. (2001), for example, recommend using 
a log (q/T) threshold of -2.5 or lower (more unstable).  
 
Probability of failure thresholds for PISA and PISA.V based on the sampling approach varied for 
a given geologic terrain (Table 3-6).  PISA thresholds ranged from 0.06 in Qtwu terrain to 0.10 in 
Ty terrain and 0.17 in Qh-Qmts-Qrt terrain.  PISA.V thresholds were lower, ranging from 0.02 in 
Qtwu terrain to 0.14 in Qh-Qmts-Qrt terrain.  RS(x) and RL(x) for the inferred PISA.V thresholds 
were lower than for inferred PISA thresholds (Table 3-6).  Threshold values for PISA determined 
by the sampling approach were lower than probability of failure thresholds reported for PISA 
applications in other areas.  Haneberg (2004) found that in the Wheeling area of West Virginia, 
the correspondence between active landslide area and probabilities of sliding at the 0.5, 0.3, and 
0.1 thresholds was approximately 64, 89, and 99 percent respectively.  These results, however, 
report the distribution of calculated probability of sliding values for each hazard unit, and may not 
be directly comparable to RS(x) and RL(x) reported here for the Elk River basin.  
 



FINAL REPORT Landslide Hazards in the Elk River Basin 
Humboldt County, California 

 
1 June 2007 Stillwater Sciences 

42 

 
Table 3-6.  Confidence intervals for threshold values and associated cumulative fraction of slides or area classified by the threshold value. 

Threshold potential instability2 Cumulative fraction of slides 
(RS(x))3 

Cumulative fraction  
of area (RL(x))4 

Model Geologic terrain 
Upper 
limit 

Expected 
value 

Lower 
limit 

Upper 
limit 

Expected 
value 

Lower 
limit 

Upper 
limit 

Expected 
value 

Lower 
limit 

Shalstab Qh-Qmts-Qrt -2.33 -2.06 -1.80 0.85 0.74 0.58 0.57 0.45 0.33 

Shalstab Qtwu -2.47 -2.32 -2.18 0.66 0.59 0.52 0.43 0.36 0.30 

Shalstab Ty -3.79 -2.51 -2.04 0.83 0.65 0.35 0.54 0.37 0.07 

Shalstab V Qh-Qmts-Qrt -2.42 -2.12 -1.80 0.84 0.72 0.57 0.52 0.40 0.29 

Shalstab V Qtwu -2.51 -2.35 -2.20 0.66 0.59 0.52 0.42 0.35 0.29 

Shalstab V Ty -2.97 -2.48 -1.93 0.80 0.62 0.43 0.55 0.35 0.19 

PISA Qh-Qmts-Qrt 0.237 0.174 0.134 0.70 0.57 0.44 0.31 0.24 0.17 

PISA Qtwu 0.060 0.055 0.050 0.55 0.49 0.41 0.27 0.22 0.17 

PISA Ty 0.145 0.092 0.073 0.68 0.57 0.42 0.31 0.25 0.14 

PISA V Qh-Qmts-Qrt 0.268 0.143 0.062 0.75 0.31 0.18 0.16 0.04 0.00 

PISA V Qtwu 0.030 0.021 0.020 0.53 0.46 0.33 0.14 0.09 0.02 
1 Determined by maximizing RS(x)-RL(x).  Confidence intervals calculated from bootstrap sampling with more than 5000 iterations. 
2 Upper limits reflect greater potential instability.  Upper and lower limits are 95% confidence interval. 
3 Cumulative fraction of slides located within areas classified as equal to or more unstable than the threshold potential instability value.   
4 Based on cumulative fraction of random points located within areas classified as equal to or more unstable than the threshold potential instability value. 
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3.3 Deep-Seated Landslide Modeling Results 

The spatial distribution of DSED-Rough and DSLED-Drain results are shown in Figure 3-12 and 
Figure 3-13, respectively.  Although model performance was not objectively tested, deep-seated 
modeling results were qualitatively evaluated by comparing model predictions of potential deep-
seated instability in select areas with clearly defined deep-seated landslide morphology visible in 
aerial photography and hillshade plots developed from 1-m LiDAR DEM data.  One potential 
approach to testing the deep-seated modeling results is to overlay the boundaries of mapped deep-
seated landslides of varying activity class onto a grid of model results and look for statistical 
differences in typical signatures for unfailed terrain (e.g., ridge-and-valley terrain sculpted by 
shallow landslide and debris flow processes) and deep-seated landslides of different activity class 
(active, dormant-young, dormant mature, and dormant old).  Figures 3-14 and 3-15 illustrate 
several mapped deep-seated landslide features of varying activity class in Railroad Gulch.  Figure 
3-16 illustrates a typical signature of ridge-and-valley terrain in Bridge Creek, where topography 
has been sculpted by shallow landslide and debris flow processes and where deep-seated 
landsliding is conspicuously absent.  The median ln(S1/S2) values from the DSLED-Rough 
results in Railroad Gulch and Bridge Creek were significantly different for signature 1 (active and 
dormant-young deep-seated landslides), signature 2 (dormant mature and dormant old deep-
seated landslides), and signature 3 (ridge and valley terrain) (Table 3-7).  Active and dormant 
young features had significantly lower ln(S1/S2) values (less clustered vector orientations 
indicating rougher topography indicative of more active mass movement) than dormant mature 
and dormant old features, and both deep-seated landslides signatures had lower ln(S1/S2) values 
than ridge-and-valley topography.  These preliminary results suggest that the deep-seated 
modeling approaches are an objective and effective means of delineating terrain prone to deep-
seated landsliding and earthflow.  DSLED-Rough and DSLED-Drain results warrant a more 
objective and rigorous validation test when more detailed mapping and inventory of the type, 
boundaries, and activity level of deep-seated mass movement features in the Elk River basin 
become available.   
 

Table 3-7.  Descriptive statistics for deep-seated landslide and ridge-and-valley signatures. 

DSLED-Rough values (ln[S1/S2])1 
Signature 

Median Lower 
Limit 

Upper 
Limit 

1 Active and dormant young deep-seated landslides 0.643 0.640 0.646 
2 Dormant mature and dormant old deep-seated landslides 0.670 0.669 0.672 
3 ridge and valley terrain 0.976 0.974 0.978 

1 Upper and lower limits are for the 95% confidence interval. 
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4 LANDSLIDE HAZARDS IN THE ELK RIVER BASIN 

This report summarizes spatially distributed modeling of potential instability conducted in the Elk 
River Basin to assist in assigning a set of landslide hazard classes that will be used in developing 
a sediment TMDL and related strategy for recovery of sediment impaired beneficial uses in the 
Elk River basin.  Mechanistic/physically-based modeling was conducted using the best available 
topographic data (4-m grid from LiDAR data), and model results were tested using the best 
available landslide data. Modeling and model testing results from this report will be integrated by 
NRWQCB to define landslide hazards that can be combined with information about sediment 
delivery and vulnerability of receptors to sediment impairment in assessing risk as part of TMDL 
analysis and implementation in Elk River.  Landslide hazard, in this context, refers to the 
potential for occurrence of a damaging landslide within a given area; such damage could include 
loss of life or injury, property damage, social and economic disruption, or environmental 
degradation  (National Research Council 2004).  Landslide hazard classes will be integrated by 
normalizing results from the best-performing deterministic (SHALSTAB and SHALSTAB.V) 
and probabilistic (PISA and PISA.V) model approaches.  
 
P-tests and comparisons of landslide density to random point density in each instability class 
statistically demonstrate that (1) shallow landslide models predict greater instability at landslide 
initiation sites than at randomly selected points, and (2) the models are significantly better 
predictors of potential shallow instability than predictions based solely on hillslope gradient.  P-
tests indicated that three of the four models (SHALSTAB, SHALSTAB.V, and PISA) predicted 
greater instability at 82% or more of the landslide initiation sites than at randomly selected points 
(Table 3-1).1  When p-tests were conducted by randomly sampling points from a distribution of 
potentially unstable slopes (defined by hillslope gradient at landslide points), these models 
predicted greater instability at 75% or more of the landslide initiation sites (Table 3-1).1  
Landslide densities significantly increased above random point densities at the log [q/T] values of 
about -2.5 to -2.8 using SHALSTAB and SHALSTAB.V (Figures 3-5 and 3-6), and at failure 
probabilities of about 0.15 to 0.3 using PISA (Figures 3-7and 3-8).  Comparisons of model 
performance based on p-tests indicated that SHALSTAB.V was the best performing deterministic 
model and PISA was the best performing probabilistic model (Tables 3-2 through 3-4).   
 
Previous SHALSTAB validation studies have suggested potential log q/T thresholds from -2.2 to 
-3.1.  In terms of correct landslide prediction and cumulative area encompassed by potential 
instability in the Elk River watershed, PISA probabilities of 0.01 to 0.10 are comparable to 
SHALSTAB V log (q/T) –2.2 to –3.1 (Table 3-5, Figure 3-11).  SHALSTAB V results in the Elk 
River basin, however, correctly classified fewer landslides and less of the watershed area as 
unstable for a given log (q/T) threshold compared to previous SHALSTAB validation studies in 
similar terrain. 
 
Bootstrap samples of model predicted instability in the vicinity of slides and randomly selected 
points were used to assess thresholds for managing landslide hazard that minimize the total costs 
associated with incorrect slide classification and over prediction of potentially unstable area.  

                                                      
1 Results summarized here are based on p<0.5, maximum instability within 8-m radius, and include only landslides 
where p<0.5 for at least one model.  Refer to Section 2.4.1 for a description of p-test methods and Section 3.2.1 for p-
test results. 
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Log(q/T) thresholds for SHALSTAB.V based on the bootstrap sampling approach ranged from    
-2.12 in Qh-Qmts-Qrt terrain to -2.48 in Ty terrain to -2.51 in Qtwu terrain (Table 3-5).  PISA 
thresholds ranged from 0.06 in Qtwu terrain to 0.10 in Ty terrain to 0.17 in Qh-Qmts-Qrt terrain.  
Threshold values determined by the bootstrap sampling method were lower than suggested 
thresholds reported for SHALSTAB applications in other areas (Dietrich et al 2001, Montgomery 
et al. 1998).   

4.1 Uses and Limitations 

Although modeling of potential hillslope instability and assessment of potential landslide hazard 
thresholds is intended to inform resource agencies, land managers, and the public about hillslopes 
that are most sensitivity to management activities; the landslide hazard assessment does not 
assess how slopes will specifically respond to management-related slope alterations (drainage and 
excavation) or large seismic triggering events, both of which can increase hazard.  Landslide 
hazard mapping is intended to show where further field investigation is necessary and prudent.  
Specific sites with higher and lower hazard may exist within any of the hazard classes, and hazard 
mapping should be used in combination with field geomorphic mapping and geotechnical 
investigations at specific locations.  Hazard mapping is most applicable at the scale and resolution 
of the input data.  This scale allows project level planning and review, but site-specific 
determination of landslide hazard and risk should be based on site-specific data and evaluation by 
qualified professionals.  Lastly, landslide hazard mapping does not directly address potential 
sediment delivery from landslide-prone areas to a watercourse and/or other important receptors.  
Landslide hazard mapping, however, may be used in combination with information about 
hillslope and channel gradient and empirical data on sediment delivery to assess sediment 
delivery potential. 

 

4.2 Future Analyses 

Analysis of potential instability and delineation of landslide hazard is dependent on the precision, 
accuracy, and resolution of available information.  Analyses in this report were conducted with 
best available information.  However, many input parameters are poorly constrained and 
landslide data available for model testing are limited by spatial precision and accuracy.  Analyses 
of landslide hazard can be improved in the future as the accuracy, precision, and resolution of 
input information improve over time.  Specific areas for future improvement and research include 
the following:  

• Root strength and the rate of root strength decay following disturbance is a large source 
of uncertainty in predictions of potential hillslope instability.  More research is needed to 
better constrain root strength parameters for different vegetation cover types and root 
strength decay with time since disturbance (e.g., fire or timber harvest) 

• This landslide hazard assessment evaluated potential instability of open slopes controlled 
primarily by topography and pore water pressure.  More work is needed to assess how 
management-related slope alterations (road excavation and drainage) influence potential 
hillslope instability within different landslide hazard classes and geologic terrains. 

• Correlation of the factors influencing hillslope instability to landslide occurrence on a 
watershed scale has historically been limited by the resolution of the topographic data 
available for mapping observed landslide initiation areas.  High-resolution topographic 
data from LiDAR is now available to more accurately and precisely map the location of 
landslide initiation, erosional, and depositional areas in the Elk River basin.  Landslide 
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field and aerial photo inventories consisting of erosional and depositional map polygons 
registered to the same LiDAR topographic data used here to model potential instability 
would provide a better means of testing the modeling results and determining thresholds 
of instability for landslide hazard classes. 

• More work is needed to develop methods of estimating sediment production and delivery 
under different management scenarios using the landslide hazard assessment in 
combination with other data sources.   

• More work is needed to characterize the type, boundaries, timing, and activity level of 
deep-seated landslides in the basin in order to better validate the deep-seated model 
results and develop appropriate hazard classes.  
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Appendix A 
 

Probabilility Density Functions for Hillslope Gradient at 
Landslide Points in Different Geologic Terrains 
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Appendix B 

 
Model Values at Landslide Initiation Points 
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Appendix C 

 
P-test Results at Landslide Initiation Points Based on Random Points 
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Appendix D 

 
P-test Results at Landslide Initiation Points  
Based on Points Randomly Sampled from  

a Probability Distribution of Unstable Slopes 
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Appendix E 

 
Results from sampling approach to determining landslide hazard 
threshold based on model values at landslides and random points 

 
 


